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NOTICE

This report deals with a method of studying the equation of cylin-
drical waves particularly indicated-for the solution of certain problems
in aerodynamics. One of the most remarkable aspects of this method is
that it reduces problems of a hyperbolic equation to problems of harmonic
functions. We have applied ourselves here to setting up the fundamental
principles, to developing their investigation up to calculation of the
pressures on the visualized obstacles, and to showing how the initial
field of “conical flows” was considerably enlarged by a procedure of
integral superposition.

Such an undertaking entails certain dangers. In France ~he exist-
ence of conical flows was not known before 1946. Abroad, this question
has, for a long time, given rise to numerous reports which either were
not published or were published only after a certain delay. Thus it
must be pointed out that some of the results here obtained, original in
France when found, doubtlessly were not original abroad. Nevertheless
it seems possible to me to specify a certain number of points treated
in this report which, even considering the lapse of time, appear as new:
the parts concerning homogeneous flows, the general study of conical
flows with infinitesimal cone angles, the numerical or analogous methods
for the study of flows flattened in one direction, and a certain number
of the results of chapter IV. Moreover, even where the results which we
found independentlywere already known abroad, the employed methods are
not always identical.

Another peculiarity should be noted. Since these questions actually
are everywhere the object of numerous investigations,progress has made
very rapid strides. This report edited at the beginning of 1948, risks
appearing, in certain aspects, slightly outmoded in 1949. To extenuate
this inconvenience we have indicated in a brief appendix placed at the
end of this report the progress made in these questions during the last
year. This appendix is followed by a supplementary bibliography which
indicates recent reports concerning our subject, or older ones of which
we had no previous knowledge.

I should not have been able to successfully terminate this report
without the advice and support of my teacher, Mr. J. Peres, and it is
very important to me to express here my great respect for and gratitude
to him.

I should equally cite all those who directly or less directly have
contributed to my intellectual development and to whom I owe so much:
my teachers of special mathematics and of normal school, Mr. Bouligand
who directed my first reports, Mr. Villat, promoter of the Study of the
Mechanics of Fluids in France whose brilliant instruction has been of
the greatest value to me.
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I also feel obliged to thank the directors of the O.N.E.R.A. who
have facilitated my task, and especially Mr. Girerd, director of aero.
dynamic research.
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PREFACE

With his research on conical flows and their application, Mr. Paul
Germain has made a major contribution to the very timely study of super-
sonic aerodynamics. The present volume offers a comprehensive expose’
which had been still lacking, an expos~ of elegance and solid construc-
tion containing a number of original developments. The author has fur-
thermore considered very thoroughly the applications and has shown how
one may solve within the scope of linear theory, by combinations of
conical flows, the general problems of the supersonic wing, taking into
account dihedral and sweepback, and also fuselage and control surface
effects. The analysis he develops in this respect leads him to methods
which permit, either by calculation alone or with the support of
electrolytic-tank experimentation, complete and accurate numerical
determinations.

After a few-preliminary developments (particularly on the validity
of the hypothesis of linearization),chapter I is devoted to the gener-
alities concerning conical flows. In such flows the velocity components
depend only on two variables and their determination makes use of har-
monic functions or of functions which verify the wave equation with two
variables according to whether one is inside or outside of the Mach
cone. Mr. Germain specifies the conditions of agreement between func-
tions defined in one domain or in the other and shows that the study of
conical flows amounts in general to boundary problems relative to three
analytical functions connected by differential relationships. He studies,
on the other hand, homogeneous flows which generalize the cone flows and
are no less useful in the applications.

From the viewpoint of the linear theory of supersonic flows one
must maintain two principal types of conical flows, bounded respectively
by an obstacle in the form of a cone with infinitesimal cone angle, and
by an obstacle in the form of a cone flattened in one direction.

The general investigation of the flows of the first t~e is entirely
Mr. Germain’s own and forms the object of chapter 11 of his book. By a
subtle analysis of the approximationswhich may be legitimate Mr. Germain
succeeds in simplifying the rather complex boundary problem he had to
deal with; he replaces it by an external Hilbert problem. He shows how
it is possible, after having obtained the solution for an orientation
of the cone in the relative air stresm, to pass, in a manner as simple
as it is elegant, to the calculation of the effect of a change in inci-
dence. He gives general formulas for the forces, treats completely
diverse noteworthy special cases and finally applies the method of trigo-
nometric operators which is also his own to the practical numerical
calculation of the flow about an arbitrary cone.

The determination of movements about infinitely flattened cones has
formed the object of numerous reports. The analysis which Mr. Germain
develops for this question (chapter III) contributes simplifications,
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specifications,and important supplements. Thus he evolvesj in the case
of am obstacle inside the Mach cone, a principle of minimum singularity
which enters into the determination of the solution. Mr. Germain gives
two original methods for treatment of the general case: one utilizes
the electrolytic-tankanalogy, surmountingthe difficulty arising from
the experimental application of the principle of minimum singularity;
the other, purely numerical, involves the-trigonometricoperators quoted
above.

In the last chapter, finally, Mr. Germain visualizes the composi-
tion of conical flows with regard to aerodynamic calculation of a super-
sonic aircraft. Concerning this subject he develops a complete theory
which covers most of the known results and incorporatesnew ones. He
concludes with an outline of the flows past a flat dihedral, with appli-
cation to the fins and control surfaces.

l%e creation of the National Office for Aeronautical Study and
Research has already made possible the setting up of groups of investi-
gators which do excellent work in several domains that are of interest
to modern aviation .smdput us on the level of the best research centers
abroad. Mr. Paul Germain inspirits and directs one of those groups in
the most efficient manner. He is one of those, and the present report
will suffice to bear out this statement, on whom we can count for the
development of the study of aerodynamics in France.

Joseph Peres
Member of the Academy of Sciences
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1354

.- GENERAL THEORY ,OFCONICAL

TO SUPERSONIC

By Paul

FLOWS AND ITS APPLICATION

AERODYNAMICS*

Germain

CHAPTER I - GENERKLITllZSON CONICAL FLOWS

1.1 - Equations of Supersonic Linearized Flows

1.1.1 - General Equation for the Velocity Potential

Let us visualize the per&nent irrotationalflow of a compressible
perfect fluid for which the pressure p and the density p are mutual
functions. The space in which the flow takes place will be fixed by
three trirectangular axes Oxl,

x ~ t~~ro~~~l~ ~~rdinates ‘f a fluidmolecule will be xlY X2? 3+”” OXi of the veloc-

ity V and of the acceleration A of a molecule will be denoted by

‘i and ai, respectively.

The fundamental equations which permit determination of the flow
are the Euler equations

or

lh
ai = -.—

P bXi

the equation of continuityl-

(1.1)

*“La th60rie g6n6rale des movements coniques et ses applications
a l’a~rodynamique supersonique.” Office National d’fitudeset de
Recherches A&onautiques, no. 34, 1949.

lWe employ the classic convention of the silent index: &(pui)
i

is to be read:
*(Q +*(PU2) +*(”U3)”

.-



-b
div PV = O or

*(””i) = 0

and the equation of compressibility

P = f(P)

If one notes that

aUi
a.1 =Uk%

and introduces the sonic velocity2

~2 _ dP——
dp

the equation (1.1) assumes the form

:-

aUi lb _ ldp~p _ / bp—= .—— _-— —— _-— —
‘k axk P axi P dp axi P axi

NACA TM 1354

(1.2)

(1.3)

(r.4)

(1.5)

We introduce the velocity potential O (xl, x2, X3), defined with

the exception of one constant, by

2
The velocity of sound, introduced here by the symbol ~ has a

dp
well-known physical significance; it is the velocity of propagation of
small disturbances. This significance frequently permits an intuitive
interpretation of certain results which we shall encounter later on
(see section 1.1.4).
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which
If we

—.

is legitimate since we shall assume the flow to be irrotational.

L .LLAL

one sees, taking into account equations (1.5) and

MM a20 s =2 a20
axi axk axi axk 3xi2

(1.2), that

(1.6)

This equation is the general equation for the velocity potential.
One may show, besides, that c is a function of the velocity modulus;
thus one obtains an equation with partial derivatives of the second
order, linear with respect to the second derivatives, but not completely
linear.

The nonlinear character of the equation for the velocity potential
makes the rigorous investigation of compressible flows rather difficult,
at least in the three-dimensional case.

In order to be able to study, at least approximately, the behavior
of wings, fuselages, and other elements of aeronautical structures, at
velocities due to the compressibility, one has been led to introduce
simplifying hypothesis which permit “linearization”of the equation for
the velocity potential.

1.1.2 - The Hypotheses of Linearization and Their Consequences

For aerodynamic calculation, one may assume that the body around
which the flow occurs has a position fixed in sp~ce~d that the fluid
at infinity upstream is moving with a velocity U, U being a constant
vector, the modulus of which will be taken as velocity unit. ~We shall
always assume that the axis Oxl has the same direction as U; the

hypotheses of linearization amount to assuming that~t every point of
the fluid the velocity is reasonably equivalent to U.

We put in a more precise manner

u= =l+UL ‘2 =V
‘3

=W
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u) VY w are, according to definition, the components of the “pertur-
bation velocity.”

(1) u, v, w are quantities which are very small referred to
unity; if one considers these qu~tities as infinitesimals of the first
order, one makes it at least permissible to ne@ect3 in the equations

all infinitesimals of the second order such as U2, V2, UV, etc.

(2) All partial derivatives of u, v, w with respect to the
coordinates are equally infinitesimalsat least of the first order so

authat one is justified in neglecting terms such as u —

()

&2, etc
ax~‘ dxz “

One may deduce from these hypotheses a few immediate consequences:

(a) At every point of the field, the angle of the velocity vector
with the axis ox~ is an infinitesimal of the first order at least.

Hence there results a condition imposed on the body about which the flow
is to be investigated; at every point the tangent plane must make a
small angle with the direction of the nondisturbed flow (this is what
one calls the uniform motion, defined by the velocity 3).

If one designates by q the velocity modulus, one has, taking the
hypotheses setup into account

q2=(l+u)2+v2+w2 =1+2U

whence

q=ltu

(b) The pressure p and the density p differ from the values P1

and P1 which these magnitudes assume at infinity upstresm only by an

infinitesimal of the first order; the equation (1.5) is written in effect

3This signifies that u, v, w may very well not be infinitesimals
of the same order; in this case one takes as the principal infinitesimal
the perturbation velocity component which has the lowest order.
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with c1 denoting the sonic velocity at infinity upstream; thus

.-.= :2( )u=-— P - P~

On the other hand, according to equation (1.4)

P -Pi= cl’(p - pl) = -plu

If one defines the pressure coefficient CP by

P - P1
Cp =

P1/21312

one has

Cp = -2U

(1.7)

(1.8)

(c) Finally, anexmnination of what becomes of the equation for the
velocity potential (equation (1.6)) under these hypotheses shows that it
is reduced to

Let V(Xl,XZ,x3) be the “disturbance potential,” that is, the

potential the gradient of which is identical with the disturbance-
velocity vector; q(~,x2>X3) is the solution of the equation with

partial derivatives of the second order

1- C12 #’q _ b% + &f-
2

c1 axlz axzz ax3’
(1.9)

a completely linear equation.
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Wch number of the

It I= — which, with
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flow is called the dimensionless con-

the velocity unit to be chosen arbitrarily,
c1

is written here M = I/Cl.

We put: G(M2 - 1) = ~2, with e being equal +1 or -1 according to
whether M is larger or smaller than unity.

(1) If M <1, equation (1.9) is written

~2 a% + a29 ● a2T =——
ax~z ax22 3X32

0

an equation which may be easily reduced to the Laplace equation.

This equation applies to flows called “subsonic” because the velocity
of the nondisturbed flow is smaller than the sonic velocity at infinity
upstream. These flows will not be investigated in the course of this

4report .

(2) If M >1, equation (1.9) is thus written

(1.10)

This equation applies to “supersonic”flows; if one interprets xl

as representing the time t, this equation is identical with the equa-
tion for cylindrical waves, well-known in mathematical physics. Investi-
gation of this equation will form the object of this report.

Remarks.

(1) It should be noted that, in order to write the preceding equa-
tion, it was not necessary to specify the form of the equation for the
state of the fluid. In particular, the formulas written above do not
introduce the value of the exponent 7 of the adiabatic relation p = kpy
which is the form usually assumed by the equation of compressibility.

4Investigation of linear subsonic flows has formed the object of
numerous reports. See references 1 and 2.
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(2) The preceding analysis shows clearly the very different char-
acter of subsonic flows which lead to an elliptic equation, and of
supersonic flows which are represented by a hyperbolic equation.

.—aa

(3) when We mOte equation (1.9), we supposed implicitly that
M2 - 1 was not infinitely small, that is, that the flow was not “tran-

sonic,” according to the expression of Von K&nn&n5. Thus it is impossible
to make M tend toward unity in the results we shall obtain, in the

hope to acquire information on the transonic case6.

(4) It may happen, in agreement with the statement made in foot-
note 3, that u is an infinitesimalof an order higher than first. In
this case, one will take up again the analysis made in paragraph (b) of
section 1.1.2, which leads to a formula yielding the CP‘ more adequate

than the formula (1.8)

Cp = -2U - (V2 + W2) (1.11)

1.1.3 - Validity of the Hypotheses of Linearization

Any simplifying hypothesis leads necessarily to results different
from those which one would obtain with a rigorous method. Nevertheless,
it was shown in certain numerical investigationson profiles (two-
dtiensional flows) where the rigorous method and the method of lineari-
zation were applied simultaneouslythat the approximation method provided
a very good approximation for the calculation of forces. Besides, it
is well-known that the classic Prandtl equation for the investigationof

5Study of the transonic flows, with simplifying hypotheses analogous
to those that have been made, requires a more compact analysis of the
phenomena. It leads to a nonlinear equation, described for the first
the by Oswatitsch and Wieghart (ref. 3). From it one may very easily
deduce interesting relations of similitude for the transonic flows
(ref. 4). One may find these relations also, in a very shple manner,
by utilizing the hodograph plane.

6In a general manner, according to the values of M, one may be led
to neglect certain terms in the final formulas found for the pressure
coefficient CP“

This requires an evaluation, in every particular case,

of the order of magnitude of the terms occurring in the formulas when M
varies. In this report, we shall never enter into such a discussion.
We shall limit ourselves voluntarily to the general formulas. An inter-
esting example of such a discussion may be found in the recent memorandum
of E. Laitone (ref. 5).
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fluid furnishes very acceptable
from a linearization of the

occasion several times to point
it out, that the solution found for u, v, w will not satisfy the-
h~otheses of section 1.1.2 in certain regions (for example in the neigh-
borhood of a leading edge); eventually certain ones among these magni-
tudes could even become infinite.

Under rigorous conditions such a solution should not be retained.
Anyhow, if the regions where the hypotheses of linearization are not
satisfied are “sufficiently small,” it is permissible to assume that the
expressions found for the forces (obtainedby integration of the pres-
sures) will still’remain valid. This constitutes a justification
a posteriori for the linearizationmethod so frequently utilized in

numerous aerodynamic problems7. Therefore, we shall not systematically
discard the solutions found which will not wholly satisfy the hypotheses
we set up.

1.1.4 - Limiting Conditions. Existence Theorem

Physically, the definition of sonic velocity leads to the rule
which has been called the “rule of forbidden signals” (see footnote 2
of section 1.1.1) smd which can be stated as follows:

A disturbance in a uniform supersonic flow, of the velocity U
produced at a point ~, takes effect only inside of a half-cone of
revolution of the axis U and of the apex half-angle u . hc sin(l/M);
(P cot u) a is c~lled the Mach sngle, the half-cone in question “Mach
after-cone at P.

Correlatively, one may state that the condition of the fluid at a
point M (pressure, velocity, etc.) depends only on the character of
the disturbances produced in the nondisturbed flow at points situated
inside of the “Mach fore-cone at M;” the Mach fore-cone at a point is
obviously the symmetrical counterpart of the Mach after-cone with respect
to its apex.

If one wants to justify this rule from the mathematical viewpoint,
one must start out from the formulas solving the problem of Cauchy and
take into account the boundary conditions particular to the problem.
Along the obstacle one must write that the velocity is tangent to the
obstacle which giv~s the value dQ/dn. Moreover, at infinity

7For instance, in the investigationof vibratory motions of infin-
itely small amplitude about slender profiles.
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upstream (xl = -m) the first derivatives

is, from the aerodynamic viewpoint, only
it will be assumed zero.

=–-

9

of QI must be zero, since P

determined to within a constant,

The characteristic surfaces of the equation (1.10) are the Mach
cones. If one of the Mach cones of the point P cuts off a region (R)

on a surface (Z), the classic study of the problem of Cauchy8 shows
that the value of V at P is a continuous linear function of the
values of V and of dV/dn on R.

Let us therefore consider a point M of a supersonic flow such
that its fore-cone does not intersect the obstacle. We take as the
surface Z a plane Xl . -A, with A being of arbitrary magnitude.

On Z, T and d9/dn, which are continuous functions, will be arbi-
trarily small. Consequently the value of 9 at M is zero. Thus one
aspect’ofthe rule of “forbidden signal” is justified.

Let us suppose that the forward-cone of M cuts off a region r(M)
on the obstacle; on r(M), dq/dn is given by the boundary conditions;
thus T(M) is a linear function of the values of 9 on r(M).

One sees therefore that, if one makes M tend toward a point Mo

of the obstacle, one will obtain a functional equation permitting the
determination

existence and
9(M) depends

justifies the

of v on the obstacle, at least in the case where the

9. Consequently,uniqueness of the solution will be insured
only on the values of dV/dn in the region r(M); this

fundamental result of the rule of “forbidden signals.”1°

1.1.5 - General Methods for Investigation

of Linearized Supersonic Flows

In a re$en~ articlell dealing with the study of linear supersonic
flows, Von Khrman indicates that two major general procedures exist for

%or the problem of Cauchy, relative to the equation for cylindrical
waves, see for instance references 6 and 7.

9suChamethod has been utilized by G. Temple and H. A. Jahn, in
their study of a partial differential equation with two variables (ref. 8).

10A more exact investigation of this question may be found in
appendix 1, at the end of this report.

llSee reference 4. A quick expos~ of the methods in question may
also be found in the text, in reference 2.

1
-“
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the study of these flows, one called “the source method,” the other
“the acoustic analogy.”

The first is an old method and its theoretical application is
fairly simple. It consists in placing on the outer surface of the
obstacle a continuous distribution of singularities, called sources,
the superposition of which gives at every point of the space the desired
potential; the local strength of the sources may, in general, easily be
determined with the aid of the boundary conditions. The second method
utilizes a fundamental solution of the equation (1.10), the composition
of which permits one to obtain the desired potential; this procedure is
interesting in that it permits utilization of the Fourier integrals and
thus furnishes, at least in certain particular cases, rather simple
expressions for the total energy.

Von K&n&n aiso indicates, at the end of his report, a third general
procedure, that of conical flows.

We intend to investigate in this report the conical flows snd
the development of this third procedure which utilizes systematically
the composition of the “conical flows” and, more generally, of the flows
which we shall call “homogeneous flows of the order n.” We shall see
that this procedure permits one to find very easily, and frequently
with less expenditure, a great number of the results previously obtained
by other methods, and to bring to a successful end the investigation of
certain problems which, to our knowledge, have not yet been solved.

1.2 - Generalities on Conical Flows

1.2.1 - History and Definition

Conical flows have been introducedby A. Busewnn (ref. 9) who has
given the principal characteristics of these flows and has indicated
briefly in what ways they could be utilized in the investigation of
supersonic flows. Busemann gives as examples some results, frequently
without.proof. Several authors have supplemented the investigation of
Busemann: Stewart (ref. 10) has studied the case of the lifting wing A
to which we shall come back later on; L. Beschkine (ref. 11) has fur-
nished a certain number of results but generally without demonstration.
We thought it of interest to attempt a summary of the entire problem.

One calls “conical flows” (more precisely, “infinitesimal conical

flows’’)12the flows in which there exists a point O such that along

12~e adjective “infinitesimal” is remindful of the fact that the
flows have been “linearized;” we shall hencefomrd omit this qualifica-
tion since no confusion can arise in this report.
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every straight line
remains of the same

Let (n) be a
let us suppose only
not normal to (X);

issuing toward one side of O, the
value.

plane not containing O, normal to

11

velocity vector

the vector F;
that the velocity vector at every point of (~~, is
the projection of these velocity vectors on

determines a field of vectors, the lines of force of which we shall
call (7): the cones (u) of vertex O anddirectrix (7) are “stream
cones” for the flow.

More generally, let (S) be a stream surface of the flow, passing
through O; every surface deduced from (S) byhomothety of the center O
and of k, k being an arbitrary positive number, is a stream smface.
(S) is not necessarily conical surface of apex O, but having (S)
given as an obstacle does not permit one to foresee the existence of
such a flow. It is different if a conical obstacle of apex O is given;
the designation “conical flow” is thus justified.

Conversely, let us consider a cone of the apex O, situated entirely
in the region xl ~o, and suppose that a linearized supersonic flow

exists around this cone; this flow is n~cessarily a conical flow such
as has just been defined; in fact, ‘f ‘(X1$X2)X3) denotes this velocity

A
field, i(kX~,AX2,AX3) (k being any arbitrary positive number) is

equally a velocity field satisfying all conditions of the problem; con-
sequently, if the uniqueness of the desired flow is admitted, ? must
be constant along every half-straight line from ()13.

Let us also point out that according to equations (1.8) or (1.11),
the surfaces of equal pressure are also cones of the apex O.

1.2.2 - Partial Differential Equations Satisfied

by the Velocity Components

According to definition, the velocity components of a conical flow
depend only on two variables; on the other hand, as functions of xl,

131t should be noted that this argument will no longer be valid
without restriction in the case of a real supersonic flow around a cone
because in this case the principle of “forbidden signals” is no longer
valid in the rigorous form stated. Among other possibilities, a detached
shock wave may form upstream from the cone behind which the motion is
no longer irrotational.
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X2) X3, they are naturally the solution of the equation

bzf + azf~2 a2f . _

ax12 ax22 ax32

Let us first put

X2 =rcos O
‘3 =r sine

the equation then assumes the form

~2a2f _a2f+la2f+laf

ax12 ar2 r2 a62 r &
(1.12)

The second term of equation (1.12) is actually nothing else but
the Laplacian of ‘(X1JX2’X3) in the plane X2, ‘3 (xl being con-

sidered as parameter); naturally f(xl,r,e) is periodic in (1,the

period being equal to 2n.

To make the conical character of the flow evident, let us put

‘1 = ~rx (1.13)

X is a new variable; X < 1 characterizesthe exterior of the Mach
cone with the apex 0, X > 1 characterizesthe interior of the cone.
Under these conditions, the disturbance-velocitycomponents are func-
tions only of X and e. Since f

&dXd@+
ax ae

is a function of X and 9 only

&362+@&d2X+~d2e
3e2

but
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a2f, & &,g are the respective coefficients
ax~z hr2’ h62

d2f- as a function of.d~2, ~2r--in the expression of
ables x , r, f3.

1

As a consequence, the

(# .

13

of dxlz, drz,

the vari-

equation (1.12) becomes under these conditions

(1.14)

One may try to simplify this equation further by replacing the
variable X by the variable ~, X and ~ being connected by a rela-
tionship X = X(E), and by making a judicious choice for the func-
tion X(5). The first operation gives

[ 1(~’-’)x’$+g$+g-+ ‘0

with the -primesdenoting derivatives with respect to 5. For simplifying

this equation, one may make the term in ~ disappear. This will be

realized by putting

(1) If X >1,

one obtains for f Laplace’s equation

(1.15)

(1:16)

(2) If X <1,

x=cos~ (1.17)

in this case, one obtains the equation for waves with two variables

azf a2f o—-— = (1.18)
aq2 a~2
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Geometrical interpretation.- X > 1 corresponds to the interior of
the Mach rearward cone (r) of the point O; every semi-infinite line,
issuing from O, inside of this cone, has as image a point 0, ~. One
will assume: for instance, -m < @ < YC; ~ = O corresponds to the
cone (1?), ~ =CO corresponds to the cone axis (it will always b~r~os-
sible to assume 5 as positive). The image of the interior of
forms therefore on the region (A) of the plane (e,~) (fig. 1), limited
by the semi-infinite lines AT, A’T’ and by the segment AA’. The
correspondence is double valued in the sense that to a semi-infinite
line issuing from O there corresponds one point and one only (6,E)
in the bounded region and conversely, to one point of this region there
corresponds one semi-infinite line, and one only, issuing from O,
inside of (r).

Since we shall suppose, in
entirely in the region xl >0,

(9 then being identically zero

of this region issuing from O,

(fig. 2), that is, according to

general, that the cone investigated is
only this region will be of interest

for xl < O). The semi-infinite lines

outside of (r), correspond to O<X<l

equation (1.17), O < q <~; ~ = O

corresponds to the cone (r), TI=: to the plane xl = O; the semi-

infinite lines issuing from O correspond biunivocally to the points
of the region (A’), inside of the rectangle AA’B’B in the plane (e,?).

Summing up, the velocity components satisfy the simple equa-
tions (1.16) and (1.18), the first of which is relative to the region (A),
the second to the region (A’).

1.2.3 - Fundamental Theorem

The equation (1.14) which represents the fundamental equation of
our problem is an equation of mixed type; it is elliptic or hyperbolic
according to whether X is larger or smaller than unity. In order to
study this equation in a simpler manner, we have been led to divide the
domain of the variables into two parts and to represent them on two
different planes. How an agreement will be reached between the solutions
obtained for f in the two planes - that is the question which will be
completely elucidated by the following theorem which will be fundamental
in the course of our investigation.

Theorem: There exists “agreement” as to X = 1 for all derivatives of

f, defined in either the region (A) or (A’), provided that there is

“agreement”for the function itself.
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In fact, let us take two functions f~(e,~), f2(@,q), the first

satisfying the equation (1.16) in the region (A), the second the equa-
tion (1.18) in the region (A’), both assuming the same values (p(e) on

>.; the respective segments (~ = O, -m <.0 <m) (q = O, -m < @ <n). Let

anfl
El. be the abcissa of a point of AA’. If —(ElO,O) exists,

};)$ ben

anf2
?&(eo,o) = ~(eo)o)

Let us now pass to the investigation of the derivatives of the

order n of the form aw the equation (1.14) shows first that
b~en-l:

a2qe,l)$4Je,l) = - —
ae2

which proves that all partial derivatives of the order 1 with respect
to X have the ssme value on (~), whether they are calculated starting
from fl or from f2. The argument develops without difficulty through

recurrence. By deriving equation (1.14) n times with respect to X
and making X = 1, one obtains

(2n + l)= + n2 ~ + an+2f = O
axn+l a~ ae2a?

which finally shows that the values
bn+Pf

can be uniquely expressed
h$axn

as a function of the derivatives of T(e) with respect to 6’ and that
they, consequently, have the same value, whether calculated starting
from fl or from f2.

1,

ED Summing up, one may say that it is sufficient for the establishment
of the “agreement”between two solutions defined in (A) and (A’), if
these solutions assume the same value on the segment AA’.
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1.2.4 - Mode of Dependence of the Semi-Infinite

Lines Issuing From O

If one puts in the plane (e)q)

e+q =2x e- q=zll (1.19)

one sees that the characteristicsof the equation (1.18) are the parallels

to the bisectrices A = Cte, ~ = Cte. These characteristicsare, in
the plane (7,0), the images of the planes

xl =“~r COS(2A - .9) and xl = Br COS(6’- 2P)

which are the planes tangent to the cone (r). The characteristics
passing through a point bo(eo,~o) are the images of two planes tangent

to the cone (!7) which one may lay through the semi-infinite ~ cor-

responding to the point 50 of the plane (El,q) (fig. 3). The gener-

atrices of contact are characterized on the cone by the values el

and 192 of the angle e. One encounters here a result which seems to

contradict indications of section 1.1.4. This apparent contradiction
is immediately explained if one notes that, since all points of a semi-
infinite ~ issued from O are equivalent, one must consider at the

same time all Mach cones, the apexes of which are situated on ~; the

group of these cones admits as envelope precisely the two planes tangent
to the cone (17) passing through ~. We shall call “Mach dihedron

posterior” to the sem-infinite ~ that one of the dihedra formed by

the two planes which contains the group of the Mach cones to the rear of
the points of @. The region inside of this dihedron and outside of

the cone (I’) has as image in the plane (ejq) the triangle el 5.(32.

A semi-infinite Al will be said to be dependent on or independent of

~ according to whether the image of Al will be inside or outside of

the triangle el 8@2. This argument also explains why the equa-

tion (1.14) shows elliptic character inside of (r). More precisely,
two semi-infinite lines Al and A2, inside of (r), are in a state of

neutral dependence (ref. 9). In fact, let Ml be a point of Al, M2

a point of ~; let us suppose that Ml is outside of the Mach forward

cone of M2; according to the argument of section 1.1.4 the point M2

seems to be independent of Ml; but on the other hand) if one assumes Ml’
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to be a point of Al, inside of the Mach forward cone of M2, Ml’

and Ml are equivalent which explains that M2 is actually not inde-

pendent of Ml (fig. 4).

1.2.5 - The Conditions of Compatibility

Thus one may foresee how the solution of a problem of conical flow
will unfold itself. One will attempt to solve this problem in the
region (A’) which will generally be fairly easy since the general SOIU- ,
tion of the equation (1.18) is written immediatelyby adjoining an arbi-
trary function of the variable 0 + q to an arbitrary function of the
variable f3- q. This will have the effect of “transporting” onto the
segment AA’ the boundary conditions relative to the region (A’).
Applying the fundamental theorem, one will be led to a problem of har-
monic functions in the region (A). But taking as unknown functions the
components u, v, w, of the disturbance velocity, we have introduced
three unknown functions (while there was only one when we dealt with
the function P). One must therefore write certain relationships of
compatibilitywhich express finally that the motion is indeed irrotational.

The motion will be irrotational if udx1+vdx2+wdx3 is an

exact differential which will be the case when, and only when

‘1 du+x2dv+x3dw=r(pX du+cosedv+sinf3dw)

is an exact differential. This can occur only if this expression
is identically zero, with u, v, w being functions uniquely of I!3
and of X (the total differential not containing a term in dr must
be independent of r):

In a conical flow the potential is written

V=UX1+VX2+= 3=r(13uX +vcosB+wsin .9)

with u, v, w being the disturbance-velocitycomponents.

One will note that T is proportional to r.

Moreover

1.3Xdu+ cosedv+sinedw =0 (1.20)
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This is the relationship which is to be written, and this is the
point in question, on one hand in the plane (e,q), on the other in the
plane (O,E).

(a) Relations in the plane (e,q). One may write

u = U1(Q + U2(P)

and analogous formulas
relations (1.19). One

dul

dl

for v and w, 1. and P being defined by the
has in particular

Besides, according to equation (1.20)

~ COS ~ dul + COS edvl+sinQdwl=O

~ cos T du2 + COS (3dv2+sinGdw2=0

however: O=A+!.-l, q=l - v; and consequently
tion (1.21) is written

[
COS P ~ COS h dul + COS ~ dvl

[
sin w 13sin h dul - sin k dvl

since the two quantities between brackets
the preceding equality causes

+ sin L

+ Cos A.

the first equa-

1dwl +

dwnl = O

(1.21)

‘d

are unique functions of A,

or

dvl dwl
-$dul =Cos Zk =

sin 2A
(1.22)
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&
+,, In the same manner one will show that

62=, . . .

dv2 dw2
-~du2 ===

sin 2~

[j

1;!\, (b) Relations in the plane (0,5).
,’“
r

The calculation is perfectly analogous. The
us to introduce the complex variable {=e+i~

equation (1.16)
and the func-

19

(1.23)

causes

tions U({), V(K), W(l), defined with the exception of an imaginary
additive constant, the real parts of which in (A) are, respectively,
identical to u(O,g), v(e,~), w(e,!l).

The equation”(I.20) permits one to write

~ch~dU+cos@dV+sin~ dW=O

If one puts

one obtains

thence one concludes as previously

(1.24)

The formulas (1.22), (1.23), (1.24) express the relationships of
compatibilitywhich we had in mind.>
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the

one

We shall utilize frequently the conformal representation for studying
problems relative to the domain (A). If one puts, in particular

sees that (A) becomes in the plane Z the interior area of the

(Co) with the center O 14 and the radiuscircle 1 (fig. 5).

If one puts Z = pele, the point Z is the image of a semi-infinite—
line, issuing

by the angle

from the origin of the space (xl,x2,x3), characterized
e and the relationship

2=X= l+pz

$r 2p

The origin of the plane Z corresponds to the axis of the cone (r),
the circle (Co) to the cone (r) itself. A problem of conical flow

appears in a more intuitive manner in the plane Z than in the plane !.
In the plane Z, the formulas (1.24) are written

-~ dU = 2zdv = 2iZ ‘w (1.25)
Z2+1 z2-~

We shall moreover utilize the plane z defined by

z= 2Z

Z2+1

The domain (A) corresponds conformably to the plane z notched by
the semi-infinitelines Ax, A’x’ (fig. 6),cthe cone (I’) at the edges
of the cuts thus determined, and the axis of the cone (I’) at the origin

14No confusion is possible between the point O, origin of the sys-
tem of axes xl> X2> ‘3 and the point O, here introduced as the

origin of the plane Z.
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L.

of the plane z. The relations of compatibility in the plane z then
assume the form

-~dU=zdV=-”izdw

m

1.2.6 - Boundary Conditions

The Two Main Types of Conical Flows

The boundary conditions are obtained by writing

(1.26)

that the velocity
vector is tangent to the cone obstacle. Let, for instance, x2(t), x3(t)

be a parametric representation of the section xl = ~ of the cone;

X3X2‘ - X2X3’, ~X3’, -~X2’ constitute a system of direction parameters

of the normal to the cone obstacle, and the boundary condition reads

WX2 ‘ -Vx’ 1
3 ( )(‘~x3x2’ - ‘2x3’ l+U) (1.27)

It will be possible to simplify this condition according to the
cases. However, the simplificationwill have to be treated in a dif-
ferent manner according to the conical flows investigated. As set forth
in section 1.1.2, two main types of conical flows may exist.

(1) The flow about cones with infinitesimalcone angles, that is,
cones where every generatrix forms with the vector ~ an angle which
remains small. Naturally, the cone section may, under these conditions,
be of any arbitrary form;+since the flow outside of (1?) is undisturbed
(velocity equivalent to U), on the cone (r) u, v, w are zero.

The problem may have to be treated in the plane Z; u(z), v(z),
W(Z) will have real parts of zero on (co). The image (C) of the

obstacle, in the plane Z, is defined by a relation p = f(e); conse-
quently, a parametric representation of the section xl = ~ will be

obtained by means of the formulas

2pX2 = cos e
l+pz
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Thus the condition (1.27) becomes

rwpsinG- 1p’ cos G + p2(p sin 0 + p’ cos e) +

[
vpcose+p’ sine+ p2(pcos0- p’ sin 19fl=$(1 +u) (1.28)

with O taken as parameter, and p’ denoting the derivative of p
with respect to 6. The investigation of conical flows with infinitesimal
cone angles will fom the object of chapter II.

(2) The flow about flattened cones, that is, cones, the generatrices
of which deviate only little from a plane containing U. Let us remember
that (section 1.1’.2)the tangent plane is to form a small angle with 8;
consequently, rigorously speaking) the section of such a cone cannot be a
regular closed curve, an ellipse for instance; it must present a lentic-
ular profile (fig. 7). In chapter III we shall study the flows about
such cones.

Remark.

Actually, we have, therewith, not exhausted all types of conical
flows, that is, those for which linearization is legitimate. One may,
for instance, obtain flows about cones, the section of which presents
the form shown in fi

F
re 8; the axis of such a cone has infinitely small

inclination toward .

Before beginning the study of these flows we shall, in order to
terminate these generalities, introduce a generalization of the flows,
t’hepossible utilization of which we shall see in a final chapter.

1.3 - Homogeneous Flows

1.3.1 - Definition and Properties

The conical flows are flows for which the velocity potential is of
the form

T = rf(f3,X)

as we had seen in section 1.2.5. One may visualize flows for which

I



/
NACA TM 1354 23

if
);
I

We shall call them homogeneous flows of the nth order15. The conical
flows defined in section 1.2 are, therefore, homogeneous flows of the
order I. However, we shall maintain the expression “conical flow” to
designate_theseflows since this term has been used by numerous authors—.
and gives a good picture.

The derivatives of the velocity potential with respect to the vari-
‘. ables xl) X2> X3 all satisfy the equation (1.10). If one then con-

siders the derivatives of the nth order of the potential of an homogeneous
flow of the nth order, one finds that they depend only on X and f3
and satisfy the equation (1.14); the analysis made in section 1.2.2
remains entirely valid. One may make the changes in variables (1.15)
and (1.17) which lead to the equations (1.16) and (1.18). Thus one has
here a method sufficiently general to obtain solutions of the equa-
tion (1.10) which”may prove useful.

The simplest flows are the homogeneous flows of the order O which
do not give rise to any particular condition of compatibility. For the
flows of nth order, in contrast, one has to write a certain number of

conditions connecting the derivatives of nth order. We shall examine16
as an exsmple the case of homogeneous flows of 2nd order.

There are six second derivatives which we shall denote qij (i

and j may assume independentlythe values 1, 2, 3)) ~ij designating

a% Outside of (1?) we shall put
aXi ~Xj”

Tij ‘9ij1 ‘(P~j2

1 2
with Vij being a fUnCtiOn Of k Ofiy, Tij Of v only (see for-

mula 1.19). Inside of (r), ‘ij is the real part of a function Oij(~)-

In order to obtain the desired relations, it is stificient to note
that

15The definition for homogeneous flows of the nth order has been
given for the first ttie by L. Beshkine (ref. 11); this author, by the
way, calls them conical flows of the nth order. One may also connect
this question with the article of Hayes (ref. 12).

16
See appendix 2.
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and to apply the results of section 1.2.5; thus one may write the fol-

lowing six relations between the Vijl

-P dVill =-&dqi21 = 1 dVi31
sin 2).

(i =1,2,3)

which, besides, are reduced to five as one sees immediately. One will

have analogous relations for the functions 9,,2 (it is sufficient to
~IJ

exchange the role of A and of P)“

Finally, one has for the analytic functions @ij(

namely six
conditions
tions qi

that there

relations which as before are reduced to five. The written
are not only necessary but also sufficient since the func-
necessarily are the components of a gradient. Thus one sees

is no difficulty in writing the conditions of compatibility
for a homogeneous flow of nth order.

1.3.2 - Relations Between the Homogeneous Flows

of nth and of (n-l)th Order

We shall establish a theorem which can be useful in certain prob-
lems and which specifies the relations existing between homogeneous
flows of nth and of (n-l)th order; we shall exsmine the case where n = 1.

1.3.2 .1.- Let us consider
flow of the order O defined by

T

inside of the cone (r) a homogeneous
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We shall first of all seek the components u, v, w of the dis-
turbance velocity

then

%.~+id(j
‘(3

=prl+P2xl
2p

X2 =rcos O x3=r sin@

thus

X2 dx3 - X3 dx2
d6 =

r2

whence one deduces

however

Z+L=
P2+1

cose+i
p2+15ine

z P P

z+= P2-1 cos 6 + i P2-lsin~
P P
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1 132+1R~~’(z~_—
‘–x1p2.1–

(1.29)

1.3.2 .2.- Let us now consider a point O’
(xl = ’1’ ‘2 =0’ ‘3 = ‘)}

~1 being a very small quantity. Let M be a point with the coordi-
nates (xl,r,e) with respect to O, inside of (r), andwiththe para-

meters “(p,f3) in the plane Z.
1st order) with the vertex O’,
its parameters in the Z-plsme:

(pl-
For the conical flow (homogeneous of
its coordinates are: (XI- cl, r, 9) and

~2 +1~1

)
‘J e

pz - 1 ‘1

since

Let us then consider two identical conical fields but with the
apexes O and O’, and form their difference. We shall obtain a
velocity field which, due to the linear character of the equation (1.10),
will satisfy this equation. If

Uo = ~i?(zjl

denotes the component u of the field with
component u in the

[1u = +~F(Z) -

the vertex O, one has as
“difference field”

-[( 1 2+12R~’(z)
RFZ-

p2+l~z=P

P2 - P2 -
[1 (1.30)

1 ‘1 ~xl–

—.. ..--———---- .-. ... . ,. ,,. .-,...,..—-—.-.! . . I . . .., ,. .,..
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El being considered as infinitely small.

relations (1.25), the components v and

[(~lp2+lR.&z2
V=<P2-1—2

1.3.2.3.- Let us consider the point

Moreover, according to the

w are written

)1+lF’(Z)

)11F’(Z)
:}

(1.31)

J

0’‘(0,s2,0),with ~2 being

a small quantity.” Let M be a point with the coordinates
()xl,r,O

with respect to O, inside of (1?),with the parameters (P,G) in the
plane Z. For the flow with apex O“, the coordinates of M are

(xl, r - ‘2 Cos e, e +

M in m on the plane

dr =

sin @
‘2 r )

as can be easily stated by projecting

X2X3 (fig. 9).

~l-pzdo

p (1+~2)2“

But on the other hand

. -Eq Cos e

2X1 p
rdQ=— de = e2 sin e

~l+pz

thus

[ 1 l+pz

[ 11+P2eiedz=eiedp+ip de = ‘2 2X1 ~isinf3-cosf3
1 - P2

with Z + dZ representing the point M in the
vertex O“.

Let us then consider two identical conical
apexes O and O“, and form their difference.
velocity field which due to the linear character of the equation (1.10)
will satisfy this equation. If

J

conical field with the

flows, but with the
We shall obtain a

V. =Il[G(Zjj

1-
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denotes the component v in the field of the vertex O, one has a com-
ponent v in the “difference field”

V =+E[G(z)] -~@Z +dZ~ = -R~’(Z)d~

besides, according to equation (1.25), the components u and w are
written

[1u=a’’+l~mqz)
Xlpz-1

xl P2 _ J2 ( -w]
~2p2+lRg3z2w.—

1

(1.33)

l.3.2.h.- With these three lemmas established, it is easy to demon-
strate the property we have in mind. Let us call “complex potential” of
a homogeneous flow of zero order the function O(Z) (section 1.3.2.1)
so that

so that the function of complex variable, the real part of which gives
inside+of (r) the projection of the disturbance velocity in the direc-+
tion 2, is the “complex velocity” of a conical field in the direction 2;
so that, finally, the velocity field obtained by the difference of two iden-
tical conical fields, the vert~ces of which are infinitely close and
ranged on a line paralle~to 2, is the “field derived from a conical
flow” in the direction 2; then we may state:
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Ijj‘1 Theorem: The field derived from a conical flow in the direction T is~
.

the velocity field of a homogeneous flow of zero order; the complex
!.
& .,
,p>
\,

otential of that flow of zero order is

I:y

proportional to the complex
,,; +

1,
velocit of the conical field given in the direction 2, since the pro-

portionalityfactor is real.
II

!
~ The proof follows immediately. According to sections 1.1.2
J
I

and 1.1.3,0ne may be satisfied with considering,for definition of a
‘$! homogeneous flow, the inside of the cone (r); comparison of the for-.>

mulas (1.29)~ (1.30)~~1.31), (1.32), (1.33) entails th~validity of
the above theorem”if~l is parallel or orthogonal to U. Hence the
general case where 1 is arbitrary may be deduced immediately; if
F(Z), G(Z), H(Z) are the complex velocities in projection on Oxl,

0X2, 0X3, the~xpression for the component u of the field derived in

ois
the direction 1 ~1,~2,~3

U=lpz+l—
[[ 1]

R Z clF’(Z) + G2G’(Z) + c3H’(Z)
xlp2_l—

ThUS, with CIF(Z) + C2G(Z) + C3@) being the complex velocity in

projection on ?, comparison of this formula with the first formula (1.29)
completely demonstrates the theorem.

+
Corollary: The field derived in the direction 1 of a conical flow,

+
the complex velocity of which in the direction 2 is K(Z), is a

velocity field of a homo~eneous flow dependent only m K(Z) (not on

the direction 7) .

The theorem just demonstrated may be extended without difficulty
to the homogeneous flows of nth and (n-l)th order. A statement of this
general theorem would require only specificationof a few definitions;
however, since we shall not have to utilize it later on, we shall not
formulate this statement.

1.
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CHAPTER

We shall
shall operate
cone (r) is

II - CONICAL FLOWS WITH INFINITESIMAL

2.1 - Solution of the Problem

2.1.1 - Generalities

now treat the first problem set up in

CONE ANGLES*

section 1.2.6. We
in the plane Z. Let us recall t~at the image of the
the circle (CO) of radius unity centered at the origin,

and that the image of the obstacle is a curve (C), definedby its polar
equation p(e). We shall denote by (D) the annular domain comprised
between (C) and (Co); we shall call (7.) the circle of smallest

radius centered at the origin and containing (A) in its interior, and
we shall call k the radius of the circle (70). In this entire

chapter, k will be considered as the principal infinitesimal.

The problem then consists in finding three functions u(z), v(z),
W(Z) defined inside of (D) except for an additive imaginary constant,
so that

(1)
-~ dU =

(2) the real parts u, v,

(3) on (C), one

[
v P cos e +

[
w p sin e -

Put in this

2Z dV = ;iz dW (1.25)
z~+l zz-~

w, which are uniform become zero on (co))

has the relation

P’ 1sin e + p2(p cos e - p’ sin 0) +

1 2p2 ~

i3(
p’ cos e + p2(p sin e + p’ cos e) . —

manner, the problem is obviously very hard

+ u)

to solve in
its whole generality; however, an analysis of the permissible approxima-
tions will simplify it considerably.

2.1.2 - Investigation of the Functions u(z), v(z), w(z)

2.1.2.1.- An analytical function of Z will be the said func-
tion ~f its real part becomes zero on (Co). Let us designate by

NACA editor’s note: Some minor inconsistencies appear in the numbering
of equations in this chapter and subsequently in chapters III and IV, but no
attempt was made to change the numbering as given in the original text.
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(70’) thecircle withthe radius l/k, centered at the origin, and by

(D’) the annu.luslimited by (7.) and (7.’) (fig. 10).

Lemma -I.-A uniform function (A), defined inside the annulus

l~ited by (7.) and (Co) may be continued over the entire domain (D’).

This results iimnediatelyfrom Schwartz’ principle. Let M and M’
be two symmetrical points with respect to

(co)’
M being inside of

(co); 6nedefines the fwcti0n (A) atthe point (M’) ashaving~
respectively, an opposite real%nd an equal imaginary part compared to
the real and the imaginary part of the function given at the point M.

Lemma II.- A homomorphic function (A) inside of (D’) has a

Laurent development of the formlT

Let H(Z) = h + ih’ be
Laurent development in (D’)

~
1

such

(=nzn)
a function

provisorily in

H(Z) = ~JnZn +:

o 1

(A). Let us write its
the form

It is an immediate demonstration and yields the formulas defining Jn

and ~

%=% J
2fi (h + ih1)70ein9de

o

17We remember that ~ denotes the conjugate imaginary of ~.
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(h+ ih’)70 denoting the value of H on
()
y. ; likewise

J

21f
Jn=~ (h + ih’)yo,e-inede

2fl ()

Consequently, according to the lemma I:

~ = .Jn

moreover

is purely imaginary, and the lemma II

We shall note that, if H(Z) is

one has the inequality

is therewith demonstrated.

limited by M on
(70) ‘r (70’)’

Iq< Mkn (11.1)

LenunaIII.- A function (A) with a real and uniform part defined

in D can be developed inside of D’) in the form

BlogZ+i~+ “%
x(

)
~ - &zn

1

with B being real.

(11.2)

Actually, the derivative of the function (A) is necessarily uni-
form. Thus one knows (see for instance ref. 13) that one may consider
the given function as the sum of a uniform function H(Z) and a loga-
rithmic term; since the critical point of the logarithm is arbitrary
inside of ()

70 , it is particularly indicated to choose this point at

the origin; since the real part of the function is uniform, the coeffi-
cient of log Z is real. Besides, since log Z has a real part zero

— ..———— .. ,,-, !! ”..,,.. “,-. —,.,, . ,.. , ,,,,
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u
on (CO), H(Z) isitself afunction (A). Thegiven function may

therefore be continued inside of (D’) and the development (11.2) is
thus justified.

-=
Remark.

If one chooses as pole of the logarithmic term a point inside of
?

(‘o)
but different from the origin, one obtains a development of the“.

form

( ‘++ ‘p+:(%--)B’ log~a
ZZ -11-a

2.1.2.2.- The functions U, V, W of the variable Z are all
three functions (A) with a real uniform part and, consequently, can
be developed in the form (11.2). We shall write henceforward

m

x(
Jn

)1
-~U(Z)=AlogZ+ia+ —-~nZn
2

1
Zn

V(Z) =BlogZ+i~+ ‘%
x(

~ - qz”
1 )}

(11.3)

I
w

x( Ln

)]
W(Z) =ClogZ-i7+ —-InZn

1
Zn

A, B, C are real, u, P, 7 are real and also arbitrary; but these
developments are not independent since the relations (1.25) must be

taken into account. For instance, Z dV/dZ must be divisible by Z2 + 1;
otherwise we would have for U logarithmic singularitieson the cone (r)
which is inadmissible. Now

m

zg.B- /%
dZ x(

)
~ + –%zn

1
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Hence one deduces the relations

, .x ( - 1)’2’[%’ + %J

1

o=~(-
[ 11)P(2’ + 1) qp+l - ~2p+l

o
/

obtained by putting in the preceding equality Z = i and Z = -i.

Likewise, Z dW/dZ must be divisible by Z2 - 1 which gives

c ‘~2P(L2p +~2P)

1

m

(11.4)

(11.5)
—

)o => (2P + I)(L,p+l + L2’+1

o
J

Finally, the equalities (1.25) lead, in addition, to relationships
connecting the coefficients of the developments (11.3) among themselves;
thus one may write the relations

[1B+2K2=-ic-2L, 11 -Kl= [1-i El + L1 (11.6)
.

~-(n-
[ 1

2)%-2 = i (n - 2)Ln-2 + riLn (n ~2)

and on the other hand

Kl = -A + 2J2

~.(n- l)Jn-l + (n + l)Jn+l
I
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2.1.2.3. Approximations for the developments (11.3).- Moreover,
the hypotheses of linearizationmust be taken into account which, as we
shall see, will permit us to simplify the developments (11.3) consider-
ably and will lead us in a very shple manner to the solution of the
problem posed in section 2.1.1.

The equalities (11.6) make V(Z) and W(Z) seem of the same
order. We shall denote by M an upper ltiit of their modulus on the
circle

()70 ●
M will be equally an upper limit of their modulus on

()70‘
and hence in the entire domain (D’). -

If one utilizes the inequality (11.1), (11.4) shows that18

()B.o~2

If one assumes a, P, 7
all impair the generality, one
the form

K1 - i?l= 0(Mk2)

zero in what follows, which does not at
may write the second formula (11.3) in

and consequently:

In the annulus limited by

equality is
(’d and(co)’‘he‘e’ond‘em‘f ‘his

0(Mk210g k)

Likewise according to equation (11.5)

c =O(MC2)

‘(z) - W(; +‘) -$ % = c‘0’ z+W(i - ‘) -s‘nzn
2

180 denotes Landau’s symbol, A = 0(Mk2) signifies that ~ is
Mk2

limited when k tends toward zero.
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In the annulus comprised between
()70

and
()
Co , the second term

of this equality is also

O(Mk210g k)

Furthermore, according to equation (11.6)

%-2 + ‘in-2 = ‘(~n) (n > 2)

Thus

w(z) - iV(Z) = 0(Mk210g k) + 2iKlZ

in the annu.lus (Yo)co)”

Finally, according to equation (11.7)

A = -Kl + O(Mk3) Jn = ~ %+1 + o(@+2)

Thus

cm

- ~U(Z) = -~(K1)log Z - 2~Z + ~~ ~ + 0(Mk310g k
2 Zn )

1

Summing up: If one is satisfied with defining V(Z) and W(Z) except

(for O Mk210g k) and U(Z) except for 0(Mk310g k), one may write in
the corona

(Yo’co)

W(Z) = iV(Z) + 2iK1Z (11.8)

V(Z) =H(Z) - KIZ (11.9)
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37

and

[f
u(z) =-; z$&az -

The coefficient K1 may be supposed to

(11.10)

(11.11)

be real, and the integra-

tion occurring in equation (11.11)must be made in such a manner that
~[u(z)] will be an infinitely small quantity of the third order at
least on Izl = 1.

2.1.2.4 - Remarks.

(1) The formula (11.8) which is the most importantmaybe estab-
lished immediately from the second formula (1.25). However, the method
followed in the text, even though a little lengthy, seems to us more
natural; also, it shows more clearly the developments of the func-
tions U, V, W.

(2) Strictly speaking, the hypotheses set forth in the course of
this study must be verified by the solutions found in each particular
case. We shall, however, omit this verification which in the usual
cases is automatically satisfactory.

(3) me results obtained by the preceding analysis and condensed
in the formulas (11.8), (11.9), (11.11) are in all strictness valid only
in the annulus (70~Co)~ but not in the domain (D). However) it is
very easy to extend, by analytical continuation,the definition of H
to (D). Let us now first suppose that (C) contains O in its
interior; since one may write V(Z) in the form

w

V(Z) = H(Z) -~–~Zn + B log Z

1

one sees that, since V(Z) is defined by hypothesis in (D), and one
*

%%can extend — Zn and B log Z inside of
(70) up to (C), H(Z)

1

—-,... -,,..-— —-,-., .,,.,-,.. , ,,.. .. ,, ,., . .-...-.-— .- ---_____________ .-—-
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may itself be defined without difficulty inside of (D). The case where
(C) does not contain the origin offers no difficulty; it is then suffi-
cient to utilize the development given at the end of section 2.1.2.1.

As to the order of the teas neglected when one writes the equal-
ity (11.9) in the domain (D), they are found to be 0(Mk210g k) in
(D) in the case where there exists inside of (C) a circle of the
radius Ak (A and l/A may be considered as O(l)). Besides, if
that is not the case, one may justify the validity of the results of
the formulas (11.8), (11.9), (11.10), (11.11) by making a COnfOrmal
representation of the domain (D) onan annulus; the radius of the
image circle of (Co) may be assumed equal to unity; the image circle

of (C) has a radius infinitely small of first order with respect to

k and the study may be carried out in the new plane of complex variable
thus introduced, without essential complication.

2.1.3 - Reduction of the Problem to a Hilbert Problem

If one puts, according to the fomula (11.8)

V=v+iv’

with v’ denoting the imaginary part of V, one may write on (C) the
relation

!W=-v

Since one may, of course, with the accepted approximations, neglect u
compared to 1 in the second term of the formula (1.28), one sees that
this boundary condition (1.28) affects now only one single analytical
function, the function V(Z); this is a first fundamental consequence
of the preceding study. Formula (11.9) shows that t,hiscondition con-
sists in posing a linear relation between the real and the imaginary
part of H(Z) on the obstacle. Now according to equation (11.10) the
function H(Z) is a homomorphic function outside of (C), regular at
infinity; the problem stated which initially referred to an annular
area (D) is thus reduced to a Hilbert problem for the function H
defined in a simply connected region; exactly speaking, one has to solve
an exterior Hilbert problem. This is the second fundamental consequence
of the results of section 2.1.2.

Since we attempt +)0calculate V(Z) and W(Z) not further than

within 0(Mk210g k), and U(Z) within 0(Mk310g k), the relation (1.28)
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which is written

R (v -
[

iw) 2zp%3 -—

may be simplified and reduced to

[
~- i dz(v

1]i d+ - pz)
_ 2P2 de

P

-1iw) - 2P2 de
P

On (C), KIZ is, according to equation (11.1), of the order of Mk2,

and therefore

H=V=v+iv’=v-iw

consequently, H satisfies, on (C), the Hilbert condition

[
R- 1

2P2 de
iH(Z) dz = ——

P
(11.12)

2.1.4 - Solution of the Hilbert Problem

A function H(Z), homomorphic outside (C), regular and zero at
infinity, satisfying on (C) the relation (II.12) must be found. Let

z al=Z+ao+—+ . . .
z

(11.13)

be the conformal canonical representation of the outside of (C) on
the outside of a circle (Y) centered at the origin of the plane z;
the adjective canonical simply signifies that z and Z are equivalent
at infinity.

On (y) we shall put

z = reiq

. .. ...--..—— —... ...-. .-— — -... . -———
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r being constant and well determined. Let us put

F(Z) =ilog:

One has on (C) or on (y)

F’(Z) dZ = i ~= -dQ =f(0) de

with f being real; consequently

NACA TM 1354

(11.14)

(11.15)

‘[-iH81=+”~*l=Mwil

and therefore equation (11.12) is written

[1H(Z) ~ p2 de— =. —
‘iF’(Z) ~ d~

(11.16)

H(Z)/F’(Z) is a homomorphic function outside of (C) and regular at
infinity. Following a classical procedure, we thus have reduced the
Hilbert problem to an exterior problem of Dirichlet.

Let G(Z) be the holomorphi~ function outside of (C), real at

202 dO
infinity; its real part assumes on (C) the values ~m.

determined in a unique manner. According to equation (11.12)

H(Z) = -iG(Z)F’(Z) + ieF’(Z)

with c being a real constant.

G(Z) is

(11.IT)

However, we have seen (section 2.1.2.3) that the coefficient of l/Z
in the development of H(Z) around the point at infinity coeffi-

~) was real (
cient ; now, around the point at infinity

iF(z)=-;+~+ . . .
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J/
f In order to have the development of the second termof the formula (11.17)

admit a real coefficient of l/z> E must be zero since G(Z) is real at
,
; infinity. Thus the desired solution is

L>=e-
~

1
H(Z) = -iG(Z)F’(Z) (11.18)

ii
1 With the function H(Z) thus determined, the formulas (11.8),
,;

(11.9), (11.11) permit calculation of the complex velocities U(Z),
i V(Z), W(Z) within the scope of the accepted approximations. Thus the4,i
) problem posed in section 2.1.1 is solved.

‘i
Remarks.

(1) Uniqueness of the solution.- The preceding reasoning shows the
solution of the Hilbert problem satisfyingthe conditions (11.16) to be
unique. This result will be valid for our problem if one shows that
every function satisfying the condition (11.16) is a solution of the
initially posed problem (condition (11.14))which is immediate since it
suffices to repeat the calculation.

(2) Calculation of the coefficient Kl.- According to what has been

said above, the coefficient K1 is equal to the (real) value assumed by

G(Z) at infinity. In order to find G(Z), we may solve the Dirichlet
problem in the plane z; according to a classic result of the study of

harmonic functions, K1 2 df3is equal to the mean value of 2p ~ on the

circle (7). Hence

J

21’t
1K1=--O

wherein S represents the

2P2 de @p . *—J
~ dq f

Pzde = $
(c)

area inside the contour (c).

2.2 - Applications

2.2.1 - General Remark

Let us consider a cone of the apex O in the space (Oxl>x2>x3)~
the im.mgeof which in the plane Z is the curve (C), definedby its
polar equation p(e). According to the definition of p (see the
remark of section 1.2.5) the sections of this cone made by planes par-
allel tO 0X2X3 are homothetic to the curve

..%
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2pX2 =—cose 2p
‘3 = sin 19

l+pz l+pz
(11.19)

~ In the case of the linear approximations,with grad u, grad v,
grad w being infinitely small (it would even be sufficient that they
should be limited), one sees that one may, within the scope of the
approximations of section 2.1, simplify the formulas (11.19) without
inconvenienceand write them

X2 = 2p Cos @ X3 = 2p sin @

hence the result,.essential for the applications.

The curve (C) in the plane Z is homothetic to the sections of
the cone obstacle made by planes normal to the nondisturbed velocity.

Let us likewise consider a cone with variable but small incidence
so that the flow about the cone should always be a flow in accordance
with the hypotheses of this chapter. One sees that if the orientation
of the cone varies with respect to the wind, the curve (C) in the
plane Z undergoes a translation.

2.2.2 - Study of a Cone of Variable Incidence

This last remark allows us to foresee that when a thorough investi- ‘
gation of a cone has been made for a certain orientation with respect to
the velocity it will not be necessary to repeat all the work for any
other orientation. This we shall specify after having demonstrated the
following lema.

2.2.2.1 - Lemma.- One may write on (C) that

Actually, let us put

Z=pcose+ipsinO= X+iY

X and Y may be considered as functions of T.

(11.20)
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Y ‘qx - x’qY
tane=~ de _ dq

Cos% X2

and consequently

which establishes’the formula (11.20).

2.2.2.2.- Let us now consider two contours (co) and (C1) def’ined
in the plane Z by two functions Z(o)(q) and Z(l)(V) such that

z(o) = z(l) + a,, u being a complex constant determining the change in
orientation. In the development (11.13) which gives the conformal repre-
sentation, only the coefficient a. varies when one passes from the

contour (co) to the contour (C1). Consequently

and the Dirichlet condition determining the function G(l)(z) is written
in the plane z

‘P)(ZI ‘:+(1)24‘$t(o)z~‘+Z$I]
(we have omitted superscriptsfor the quantities which retain the same
value, affected by the index O or 1). Consequently

[1G(l)(z) =G(0)(z) +:g(’)

since g(z) is a regular function and real at infinity, homomorphic out-
side of (Y), the red. part of which on (7) assumes the

—
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values ~(~ dZ/dz), g(z) is then very easily determined. One has
exactly

()g(z)= :z&l +!#

Thence for the function H‘l)(z), (since F’(Z) =i/z dz/dZ)

(11.21)

The formula (11.21) gives immediately
change in orientation with respect to

2.2.3 - Cone of

the solution of the problem of
the nondisturbed flow.

Revolution

We shall study first of all the case of the cone of zero incidence.
One may then do without the preceding analysis and obtain the solution
directly; that is what we shall do here. The curve (C) is a circle of

the radius ~=cte= r; the relation (1.28) is written

2ro
v cos e +w sin O =

~(1 + ro2)

On the other hand, for reasons of symmetry

v sin 19- Wcos ‘9= o

Hence one deduces immediatelythe values of v and w on (c)

2ro cos e 2ro sin e
v. w=

~(l+ro2
)

~(1 + ro2
)
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. .:, ,(z)=&#z) @)=i,;:04)(*+z) ,1122)

.

Finally the relations (1.25) permit the calculation of U

2r02

()
—1+Z22Z 4 r02 ~

-~dU=-
p(l-ro4)Z2+l Z2 ‘-~1-ro4z

whence

u(z) = ~ ’02 log z
p2 1 - ro4

(11.23)

We shall now study, returning to the method of section 2.1, the
case of a cone of revolution with incidence.

The formula (11.13) is written

z=Z-a

a being a constant which may be supposed to be real.

Consequently

F’(z) .~
z -a

On the other hand, an immediate calculation shows that
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and consequently

whence

(G(Z) =fir2+A
z -a )

According to equation (11.18)

the calculation is easily accomplished; one finds

v(z) = $Z [@&l
and

(11.24)

[

U(Z) = 4’~log(Z - a) - & - a2

1
+ haz (11.25)

pz -a (Z-a)2

since

r2K2 = +4a ~

In particular, one finds, if a = 0, by means of the approximate
formulas (11.24) and (11.25),the same result as by the formulas (11.22)
and (11.23) under the condition of neglecting in these formulas the term

r04 of the denominator.in

In order to give to these formulas a directly applicable form it
suffices to again connect the quantities a, r with the geometrical
data; for this purpose, one must use the formula defining p (p. 42).
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Figure 11 represents the cone section made by
of symmetry; u is the semismgle at the apex, y
the cone axis with the nondisturbed velocity.

One has -immediately

2r = pa 2a = BY

Finally, we shall utilize for the calculation

47

the aerodynamic plane
denotes the angle of

of Cp the for-

mula (1.11) since the velocity component u is infinitely small com-
pared to the components v and w. This formula is here written

Cp = -24J(zfl - Iv(z)p (11.26)

According to equations (11.24) and (11.25) one has

Cp = 2a210g ~ - a2 - 72 + 4a7 cos e + 272COS 2e (11.27)
~a

The case of the cone of revolution of zero incidence is obtained
by making 7 = O. One finds then again a known result. The for-
mula (11.27) had already been given by Busemann (see ref. 9) without
demonstration.

2.2.4 - Elliptic Cone

We assume first of all the simplest hypotheses wher~the
planes Ox1x2, ox~x3 are symnetry planes of the flow (U is in the

direction of the cone axis), with the cone flattened out on OX1X2.

The formula (11.13) may be written in the form

Z=Z+2
z

or

()pcose+ipsine=r ++
()

2
cos V + i r - ~sin T

r

--, ,... .. ...... .!!!! m!!. . . . . . II I l.. I II . ------------ —
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Hence one deduces successively

tan G = r2 - a2 tan q

r2 + a2

()de _ cos2e r2 - a2 = r2 a4 ~
—_— -——
dq 2COS2T r + a2 ~2 ~2

and

The Dirichlet problem, which permits calculation of G(Z), is
readily formulated; since G(Z) has a constant real part on the con-
tour (C), G(Z) is constant:

QZ=l-Q3 F’(Z) = i 1
dz 22

()

a2
zl-—

22

whence

L

and

()H(Z) =~r2-~

“*

We note besides that ~ = O.
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One calculates v(z)

..J. v(z) =

and U(Z) by the formula

u(z) = -

whence

49

by the formula (11.9)

(11.11) which may also

)z
be written

L J

( )(U(z) =~r2-~ logz - 2a2
P2 r’ 22 _ a2

)

(11.28)

(11.29)

or

If one makes a = O, one will find again the expressions already
obtained for U(Z) and V(Z) in the case of a cone of revolution of
zero incidence (formulas (11.24) and (11.25) in which one makes a=O).

We shall denote by c and by rI the principal angles of the
elliptic cone (see fig. 12). One has

whence
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The pressure distribution on the cone circumference is easily cal-
culated. It is sufficient to apply the formula (11.26);besides

v(z) 2 =

and

r

L

hence the final formula

may
one

One

q2cos2V + e2sin29

[

Cp = 2Eq - log’

~272

~2cos2T + c2sin2’T

(3(C+?) -1+ Cq

4
(11.31)

2(~2cos% + c2sin%)

7

The case where the velocity is not in the direction of the axis
be treated equallyby utilizing the formula (11.21). In this formula
must put

()22 a4 1 g=l-&H0(2). ~r ‘~ a2
dz

z
22-—

z

then obtains

2

= P(z2 - a2)

hence, remarking that

L

()
r2-$z+ax2 -%2

-*

2
z =z+~+a

..-. ---
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.,z)=,q”)+

(CL# )(-–~z z-a- 1fz - # - kaa)

2a2J*

and

()V(Z) =H(Z)-fir2-$. Z

On the other hand, we shall calculate U by utilizing the vari-
able z and the fofiula (11.20). The coefficient K2 is equal to

~K2=P
~)
r2-$. +ax2 -%2

and U(z) is then given by the formula

[ )(U(z) =~r2-$
) 12a2+uz+–m2-(lX22z2+~~+4—Z

( )
R2

log z -
P2

22 - a2
(2-a2)22 P

(11.32)

One will note that, if one puts a = O, one finds again the for-
mula (11.30), and that, for a = O, one finds again the formula (11.25),
except for the notations.

Thus one can, without any difficulty other than the lengthy writing
expenditure, calculate the pressure distribution coefficient on the
elliptic cone of any arbitrary orientation with respect to the wind.
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2.2.5 - Calculation of the Total Forces

We have already seen in section 1.2.6 that the normal to the conical
obstacle directed toward the outside has as direction parameters

1( x2x3’)y x3’, -x2’~x3x2’ -

Let ? be the unit vector coincidental with this normal, s be
the area of the section with the abscissa xl, L the length of this

section; one may make correspond to the resultant of the forces acting

(
on a section x ,

3
xl + &l) a (dimensionless)vector

?Z=+
J

Cp% ds (11.33)

situated in the plane ~x3, and a dimensionless number

Cx=+
J

Cp(’x)(-is (11.34)

the vector ?Z characterizesthe lift, the number Cx the drag.

The integrals appearing in+the formulas (33) and (34) are taken
along the section. Naturally C~ and Cx are independent of this

section. One may also replace Cz by a complex number Cz, the real

and “
?

ginary parts of which are equal to the components of the vec-
tor z on 0X2 and 0X3. For calculating equations (11.33) and (11.34)

one may utilize the section xl = ~. If we assume Z to be the length

of the contour (C) in the plane Z, we may write, taking into account
the habitual approximations

and

2Rcx=-—
pl –

if]Cp~ dZ
c.

(11.35)

(11.36)
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with the integrals appearing in equations (11.35) and (11.36) taken in
the plane Z. These integrals present a certain analogy to the Blasius
integrals (ref. 13);

CP is given by the formula (11.26); unfortunately,

it is not possible to give simple formulas for the total forces since
the integrals (11.35) and (11.36)m,ke use of all coefficients of the

conformal representation19.

We shall apply the formulas (11.35) and (11.36) to the case of the
circular cone; CP is givenby equation (11.27)

Z=rcpa

One obtains

CZ = -2u7 Cx = 2a310g * - a3 - ay2 (11.3T)

In the case of the elliptic cone of zero incidence, Cz is obvi-

ously zero

whence

with Cp being given by formula (11.31). Now

19See appendix No. 7.

—
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the

As one can see inunediatelyby putting

t = tanq

calculation of this last integral is ixmnediate.

Thus one obtains

[
Cx = y Czqz log 4 1p(e+q)-; (11.38)

with 7 being the length of the ellipse with the semiaxes —,
G!3 Jp
2 T“

2.2.6 - Approximate Formula for the Calculation of Cx

Let us consider the function U(z); according to formula (11.11)
and the remark 2 of section 2.1.4 one may say that the principal term
for U(z) is

Consequently, in first approximation

with S being the area inside of the contour (C), and r the radius
of the circle (7) on which one makes the conformal canonical repre-
sentation of (C). If one now calculates Cx, taking into account this

approximate formula, one has, according to equation (11.36)

1- -1

whence

(11.39)
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We shall state: In every first approximationthe value of the
drag coefficient Cx is given by the formula (11.39).

2.2.7 - Case Where the Cone Presen~s

an Exterior Generatrix

If the contour (C) shows an exterior angular point, the various
functions introduced in the course of the study (first paragraph of
this chapter) present certain singularities. These singularitieswe
shall specify. Let Z. be the designation angular point of (C), and

5YC the angle of the two semitangents to (C) at the point Zo(o <5<1)

(see fig. 13); if. 20 is the image of the point ‘o in the plane z,

one may write, according to a well-known result, in the neighborhood
of 20

H3=+ - 2.)’

with K

with K.

being a complex constant and k = 1 -

[F’(:)lo = KI(Z - %j-k =K,(z -

b; consequently

k
-M

Zo)

and
L

at the point

real

~ being complex constants. F’(Z) thus becomes infinite

z = Z().

In contrast, the function G(z) has, according to
part which assumes on the circle (y) the values

definition, a

This real part thus remains finite on the circle (7) (and it
satisfies there a condition of H61der). According to a known theorem,
its imaginary part likewise remains continuous on (7) (and likewise
satisfies a condition of H~lder). Consequently, one sees, if one refers
to formula (11.18) that

“
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k

H(Z) = K3(Z - ZO)-~

in the neighborhood of Zo; likewise, U, V, W will, in the proximity

of.this point, be of the order k— with respect to 1
l+k z- Zo“

Thus the analysis made in section 2.1 is no longer applicable to
this case. However, the formulas (11.35) and (11.36) show that if the
pressure coefficient assumes very high values iv the neighborhood of
z = Zo, the total energy remains finite. According to what we have

indicated in section 1.1.3 we consider the solution still valid, with
the understanding that the values of CP in the surroundings of Z = ZO

are not reliable.

2.2.8 - Delta (A) Wing of Small Apex Angle

at an Infinitely Small Incidence

If one puts in the formulas r2 = ~2
)

one obtains the pressure distribution on a
angle. Let us recall that a delta wing is
Its angle, according to definition, is the
(compare fig. 14). Thus one has

@ = 4a

at the end of section 2.2.4,
delta wing with small apex
an infinitely small angle.
half-angle u at the vertex

The formulas (11.31) and (11.32) are applicable to a delta wing of
small angle placed at an incidence also rather small.

Let us moreover assume that this opening is infinitely small with
respect to the incidence. Under these ~onditions,
U(Z) and V(Z) are written

the fo~ulas yielding

(11.40)
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Actually one is justified in omitting the second-order te~ with
respect to a. For calculating CP it suffices to apply the for-
mula (11.8); the second term of th~ second
neglected.—.

With the incidence 7, the delta wing

formula (11.40) maY be

being parallel to 0X2, one has

7P = 2ia

Finally, one may put along the A

Z=2acosT=m+cosT

One then finds

(11.41)

We remark further that p is related to the angle V of figure 14
by

One may state: the pressure coefficient on a delta wing of infi-
nitely small opening singleis independent of the Mach number of the flow.

One has

Cp=fiift=%
if one applies formula (11.35), one finds

c= = im7

This coefficient Cz has not the sane significance as the one

utilized in the theory of the lifting wing. Actually, it is, according
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to the very manner in which it was obtained, relative to the total area
of the A (pressure side and suction side); if one takes only one of
these areas into account, one must write (neglectingthe factor -i)

c= = 2JTLl)y

This formula has been found by other methods by R. T. Jones
(ref. 14). We shall find it again in chapter III, section 3.1.2.4, when
studying the general problem of the delta wing which is here only touched
on incidentally amd for the particular case of a A with infinitely
small opening angle.

2.2.9 - Study of a Cone With Semicircular Section

As the last application, we shall tr~at the case of a cone with
semicircular section, with the velocity U being directed along the

intersection of the symmetry plane and of the face plane of the cone20

(fig. 15).

The contour (c)
at the origin, of the

One obtains very

in the plane Z then is a semicircle, centered
radius a (fig. 16).

easily the conformal canonical representation of
the exterior of this-contour, on the outside of a circl~ (7) of the
radius r, c$ntered at the origin of the plane z, by means of a par-
ticular K&nan-Trefftz transformation (ref. 13, p. 128) which is written

[1

J
-i~ 2

z -a _ z - re 6
— —
Z+a -i%

z - re 6

a and r are connected by the relationship

(11.42)

4a = 3r~

In order to obtain the correspondence
the contour (C), one must distinguish two

z = reiq

between the circle (7) and
cases. Let us put

‘“Such a cone formed the front of supersonic models planned by
German engineers.
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(1) -f < P < ~, the correspondingpoint of
6

(C) is on the arc

of the circle.

Let us put under these conditions

Z = aeiv

and we shall find according to formula (11.42):

[1‘in(:+32
‘in&+3

(11.43)

(2) ~<TJ <~, the corresponding point of (C) is on the seg-

ment AA’; let us put under these conditions

Z=acosX

The formula (11.42) shows that

(11.44)

The two last formulas define completely the desired conformal
representation. Figures (17) and (18) give the variations of W and x
as functions of q.

We shall have to utilize equally the value of dz/dZ. The simplest
method for obtaining this value consists in logarithmic differentiation
of the two terms of formula (11.42). One thus obtains the result

dz Z2 + irz - r2—.
dZ Z2 - r2

(11.45)

I .
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If one has - ~ < V c ~~ one must put in the preceding formula

z = reiQ z . ~ei~

whence

dz_~l+2sin Q—— ei(q-$) _ 8 I + 2 sin 9 ei(~-~).—
dZ

(11.46)
2a2 sin t 27 sin $

If 9 is comprised between ~ and 1?—, one puts z = reiq,

Z=acos X. Thus one obtains

- ~-
dz ()161+2 sinVe12

9
—. —
dZ 27 sin2°

The function G(Z) has as its real

o

The analytic function

A

[1part ~ z~~ , that is
dz

~2 Z dZ——
Z dz

(11.4Y)

(11.48)

has a real part which, on (7), assumes these ssme values. This func-
tion is regular at infinity, homomorphic outside of (7), but witha

pole z = -ir, with the correspondingresidue being equal to -ia2.
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Let us then consider the function

dZ ~z - ir
z- 2z+ir )

This function is homomorphic outside of (Y)●
It is regular at

infinity; its value at infinity is equal to a2/2. On (y), these real
and imaginary parts satisfy H61der conditions. This function is there-
fore identical with the desired function G(z).

Hence one deduces according to equation (11.18)

and according to equation (11.19)

(V(Z) =a2~---

dz a2 a2z-irdz—. —- —
dZ Z 2zz+ir~

lz-irdz
)%z+ir=

Finally, the calculation of U(Z) may be carried out with the aid
of formula (11.29)

J J (Gti. a,zlog z-$ ‘-ir~. a210g z )+~logz
z z+irz z+ir2

and

zH- Kl=a
(

l=~l-z-irZdz21-~zdzz-ir-_
)(2 z dZz + ir 2 2 z + ir z dZ)

whence

(u(z)=~z-ir~- -l+%+ 2,0g z +lc)gz
~z+irzdZ a2 z+ir

)

The calculation of the coefficients K2 offers no difficulty what-

soever; however, as one had already opportunity to note, the term
%Z

does not Qccur in the calculation of the pressures along the cone.

I
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This pressure distribution along the cone calculated with the aid
of equation (11.26) is represented in figure 19.

2.3 - Numerical Calculation of Conical Flows With

Infinitesimal Cone Angles

2.3.1 - General Remarks

In the preceding paragraph, we have studied a certain number of
particularly simple cases. However, if the cone (C) is arbitrary, it
will be necessary to carry out various operations leading to the solu-
tion by purely numerical procedures.

Let us analyze the various operations necessary for the calculation:

(1) The conformal canonical representation of the exterior of (C)
on the outside of the circle (7) must be made; this calculation per-
mits, in particular, determination of the radius r of (y), corre-
spondence of the points of (C) ~y;d of (y), and calculation of the
expression dZ on the contour .

(2) The function G(z), homomorphic outside of (y), regular and
real at infinity must be determined, the real part on (7) of which is
known; we shall designate it by g(q). In fact, it suffices to know,
on (7), only the imaginary part of G(z), for instance g‘(9); g‘(9)
is the conjugate fuction of g(q) and is given by the formula

J

Zll
g’(q) .L

21i ()
g(~’)cot “ - q dQ’

2

This formula is called “Poisson’s integral.”

(3) with these two operations
the circle (7) (form~a (11.18))
of v and w on the cone; u is
only new calc~ation to be made is

—

accomplished, the values of H(z) on
are known which provides the values
obtained by the formula (11.29). The
that of the expression:

the constant of integration being determined
mean value zero on (Y)*

dp

so that u should have a
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All these operations always amount to the following numerical
problems:

(a) With a function given, to calculate its conjugate function
(Poisson integral)

(b) With a function prescribed, to calculate the derivative of the
conjugated function

(c) With a function prescribed, to calculate its derivative21.

We shall justify this result in the following paragraph by showing
that the operation (1) may be performed by applying the calculations (a),
(b), (C). We shall then indicate a general method, relatively simple
and accurate, which permits solution of these problems. We shall ter-
minate this chapter by giving an application.

2.3.2 - Conformal Canonical Representation

of a Contour (C) ona Circle (y)

The numerical problem of determination of the conformal canonical
representation of a contour (C) ona circle (7) has been solved for

the first time by Theodorsen22. We shall briefly summarize the principle
of this method, simplifying,however, the initial expos6 of that author.

on a
more

with

and

Let us suppose, first of all, that the contour (C) is neighboring
circle of the radius a, centered at the origin (fig. 20); in a
accurate manner, putting on (C)

Z = aev+ie (11.49)

~ being a function of e, ~ = ~(e), we shall suppose that ~(e)
d~— are functions which assume small values. We shall then call
dO

211f the conformal representationof the exterior of (C) on the
outside of (7) iS known in explicit form, it will naturallybe stifi-
cient to apply operation (a).

22Compare references 15 and 16. One may achieve this conformal
representation also by the elegant method of electrical smalogies (ref. 17);
the time expenditure required by the experimental method and by the purely
numerical methods here described as well as the accuracy of these pro-
cedures are of the seineorder of magnitude.

I,., ....--.-——— -...--...-..——.—.
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(C) “quasicircular.“ ‘Let 9 be the angular abscissa
(y) which corresponds to the point of (C), the polar
is 19;we put

e=g+z(v) T=e- C(e)

NACA TM 1354

of the point of
angle of which

(11.50)

c(e) and Z(Q) representing the same function but expressed as a
function of 19 or as a function of Q; we shall put likewise

T(Q) = $((3)

The desired conformal transformation

z

with h(z) being a homomorphic
zero at infinity. The equality
circle (Y),

= ~eh(z)

may be

function outside
(11.50) becomes,

written

of (7), regular and
if one writes it on the

r

11~eV(T)+i 9+~(1%) = rei~eh(z)

whence

h(z) =: ~(q) -+i~(q) + log: (11.51)

Finding the conformal representation of (C) on (q) amounts to cal-
culating the functions V(q) and Y(v). First of all, one knows (equa-
tion of (C)) that

(11.52)

On the other hand, according to equation (11.51), ~(p) is the conju-
gate function of 7(T)) and consequently

(11.53)
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the integral being taken at its principal value. T@re is no constant
to add to the second term of equation (11.53), for C(q) has a mean
value zero since h(z) is zero at infinity. For the same reason, if
To denotes the mean value of T(P) in an interval of the amplitude 27t

r = ae~o (11.54)

an equality which will permit calculation of r if T(T) is known.
In order to calculate ~(q) and ~(~), one disposes therefore of the
relations (11.52) and (11.53); one can solve this system by a procedure
of successive approximations.

We shall put first

Co(e) = ZO(q = o

According to equation (11.52)

T(e) = If(e)

and according to equation (11.53)

J

2TI
cl(e) = J=. ~(e’)cot “2- e de’

211 0

Thence a first approximation for T

From it one deduces, according to equation (11.52), a first approxima-
tion for T(9)

l(ql) = $1 + ‘l(~lj

whence a second approximation for the function c

.
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[ - ‘Je!l
c2(e) = E2 e

whence

CP2= e - c2(e)

The procedure can be followed indefinitely.

The convergence of the successive approximations forms the subject
of a memorandum by S. E. Warschawski (ref. 18). We refer the reader
who wants to go more deeply into that question to this meritorious
report.

From the practical point of view one may say that the convergence
is very rapid; two approximations suffice very amply in the majority of
cases; the different changes in variables which encuber the preceding
expos~ are very easily made by graphic method. Thus one sees that the
numerical work essentially consists in calculating twice the inte-
gral (11.53). This calculation is precisely the object of the prob-
lem (a) stated at the end of section 2.3.1.

If the contour (C) is not “quasicircular,”one msy make, first
of all, a conformal representation which transforms it into the “quasi-
c.ircular”contour (C’); one will then apply the preceding analysis to
the contour (C’). For certain cases it willbe quicker to use a direct
method. Let us assume, for instance, that (C) is a contour flattened
on the axis of the X (compare fig. 21) and for simplificationthat
X’OX is permissible as the axis of symmetry.

Let us suppose that X varies along (C) from -a to +a while
IYl remains bounded by ma (with m being, for instance, of the order
of 1/10); it will then be indicated to operate as follows:

Weput along (7)

Z.$
[ 1f(~) + ig(V)
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One has

-.

or also

X(T) =fcos9-gsin9

Y(cp)=fsinv+gcoscp
I

f= Xcos9+Ysin V

t3=Ycosp-Xsin V
}

f(q) is an even ofunctionof g, g(~) is an odd function

f(0) = +f(n) = a g(o) = g(n) = o

The functions X(V) and Y(Q) have to be found. Let us take as
starting point

(11.55)

(11.56)

an

by

Xo(~) = a cos q

approximation which would be definitive if (C) were an ellipse.

On the contour (C) one reads the correspondingvalue YO(V), and

means of the second formula (11.56) one obtains a first approximation

.gl(~) = Yo(T)COS T - XO(T)sin Q

fl(~) will be given by a Poisson integral

with Al being a constant, such as fl(0) = a.

Owing to the formulas (11.55), one has a first approximation X1(T),

Yl(V) for the functions X(V), Y(P). One proceeds in the same manner,

reading off on (C) the functions Yl((P) correspondingto X1(V), then
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calcu.lating

.g2(Q) =Y1(T)cos 9 - xl(~)sin ~

J

h
f2(@ = ~

2’I’C()
gz(~’)cot “ - q dq’ + AZ

2

NACA TM 1354

etc.

When one

approximateion

tions; then

has obtained a pair fn(v), gn(~) providing a sufficient

~(q), ‘n(~) ‘f X(?), Y(9), one stops the calcula-

r=hn

In practice23 it suffices to take n = 2; the same method (averaging
of very slight adaptations) will apply to the case where (C), although
being flattened on OX, will no longer admit of OX as the symmetry
axis.

Finally, for a complete solution of the problem (1) posed at the
beginning of the preceding paragraph, only dZ/dz remains to be calcu-
lated, which will obviouslybe possible with the aid of the problems (b)
or (c).

2.3.3 - Calculation of the Trigonometric Operators24

The method we shall summarize permits calculation of the linear
operators A, transforming a function P(e) into a function Q(e)

23The principle of this method is the one we applied for the study
of profiles in an incompressiblefluid. But in the case of the profiles
a few complications (which can, however, easily be eliminated) arise due
to the fact of the “tip.”

‘%e gave the principle of this method for the first time in
March 1945 (ref. 19). Compare also reference 20. In continuation of
this report, M. Watson provided a demonstration of the formulas which
we obtained by a different method (ref. 21). We also point out a “War-
time Report” of Irven Naiman, of September 1945, proposing this same
method of calculation for the Poisson integral (ref. 22).
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Q(e) =AIP(@fl

3.- and recentering one or the other of the following categories:

69

First category: The operator’possesses the following properties

A(cos me) = ~ sinmf3
I

with

from

with

A(sin me) = -~ cos me
}

A(1) = O

~ being a nonzero constant, m

zero.

Second category: A possesses the

I

any arbitrary

properties

A(cos me) = bm cos mO

A(sin me) = bm sinme

A(1) = b.
1

bm being a nonzero constant, m any arbitrary

(11.5Y)

integral different

integral.

We shall call these operators “trigonometricoperators.” The
operations which form the subject of the problems (a), (b), (c) are,
precisely, psxticular cases of “trigonometricoperators.”

With the function P(e) known, one now has to calculate the func-
tion Q(0); the functions P(e) and Q(0) are assumed as periodic, of
the period 2YC. P(0) and Q(e) are determined approximately by knowl-
edge of their values for 2n particular values of 0, uniformly dis-
tributed in the interval 0, 2fi. One knows that the unknown 2n values
of Q are linear functions of the known 2n values of P. The entire
problem consists in calculating the coefficients of these linear equa-
tions. We shall do this, examining two possible modes of calculation.
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2.3.3.1 - First mode of calculation.- After having divided the
circle into 2n equal parts, we shall put

()fi=f~

(1) Operators of the first category.- Obvious considerations of
parity show that the Qi are expressed

equations of the form

n-1

Qi ‘~~(pi+p

We shall apply
equations (11.58)

1

as functions of the Pj by

- Pi_p
)

(11.58)

the relations (11.57), that is, carry into the 2n

P(e) = cos me Q(O) = ~ sinme

and

P(e) = sin me Q(G) = -~cos mO

We thus obtain 4n equations which are all reduced
equation

n-1

E%
mfr.%sinp—–—

1
n 2

to the unique

(11.59)

This reduction is the explanation for the success of the method.
We have to determine (n - 1) unknown ~. For this purpose, we shall

write the equation (11.59), for the values of p varying from 1 to
n- 1. The system remains to be solved. If one multiplies the first

‘~, the (n - 1) by‘n the seco
th

equation by sin ~, nd by sin —
n

sin(n - 1)~, and if one adds term by term, one obtains a linear rela-

tion between the ~, with the following coefficients of If?
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with

n-1
Cn(X) = ~ COS lllx= ~os(n-l)xsin~x

2
m=o sin ~

2

Thus the coefficient of Kp is zero if p ~ p, and equal to ~ if

p=~.

Thence the desired value of
%

(11.60)

Let us apply this result to the calculation of the Poisson integral.

This integral defines an operator Q = A(P) of the first category
for which ~. -1.

Consequently, the formula (11.60) is written

if one puts

n-1
(n - 1)x ‘in ;

Sri(x)=~sin mx = sin z

1 sin ~
2

1-
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if p even
1

~=:.o@z
2n

if p odd
J

(11.61)

(2) Operators of the second category.- The considerations of parity
permit one to write the general formula

n-1

Qi = K&i +~Kp(pi+P + pi-p) + %Pi+n (11.62)
.J.

Using the sane reasoning as before, one is led to determine the coeffi-
cients

%
by the system

(11.63)

with m assuming the values 0,1, 2,...n.

Multiplying the first value by l/2,-the second by cos wfi/n,the

third by cos ~, the nth by ‘ ~, and the last by ( - l)U/2,Cos
n

and adding them, one obtains a linear relation between the Kp> with the

coefficient of $ being (p ~ O, p / n)

that is, n if V=p,and O if p}p.

The coefficient of K. is



The preceding conclusions remain valid, it is zero for v # O and equal
to n if v = O; the same result is valid for ~. Finally, one

obtains the genersl formula of solution

[-

~=+>+fl)m(m b

1
‘++(J)P+ (11.64)

m.1

Let us consider, for instance, the operator transforming the func-
tion P(e) into the function dO/d@, with Q being the conjugate func-
tion of P; it is an operator of the second category for which

bm = -m

Applying formula (11.64), one obtains

If one notes that

one sees that

if p even
1
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2.3.3.2 - Second mode of calculation.- Examination of an important
particular case will show us that—in certain cases it will be advantageous
to consider a second mode of calculation.

The method consists in replacing the function P(6) by a function
of the form

11

0(6) =~~ cos ne +bn sin nf3 (11.66)

o

for which the method is applied with the strictest exactness; the con-
stants an and .bn are such that Pi = @i. One operator of the first

category, one of the most important ones, is the operator of derivation
which makes the function dP/df3 correspond to the function P(e). If

we apply the first type of calculation, we shall replace
()

dP by
~i

()u.dO i’

tives

obtain

now, it is precisely at the points O = ~ that the deriva-

@g and ~ show the greatest deviation. In contrast, we shall
de
a good approximation of the desired function by replacing

1- -1

We are thus led to the following mode
is divided into &n equal parts; we shall

()fi=f~

and we shall express the 2n values %.i

‘Zj+l”

1- -1

of calculation: the circle
put

as a function of the 2n values

We shall lunit ourselves to the operators of the first category.
The formula expressing the

n
Q2i =

z
p=l

Q2i = afunction of ‘zj+~ is written

%( ‘2i+2p-l )- ‘2i-2p+l
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and we obtain for determination of the I$? the system

n

z%
sin ‘2P - ‘)m = - ~

2n 2
p=l

with m varying from 1 to n.

Multiplying the first equation by sin(2P - l)%, the second by

sin (2P- 1)21’C
2n’”-

., the (n-l)th by sin ‘2V-1~$-l)fi, the

( -1)+1
last by ~ and adding them, one obtains a linear relation in

G
which the coefficient

Y(sin 2p -

m=l

l)m+ sin(2p - l)% +
( _l)~+P .

2

n-1

1[
>

1
~ Cos(p - I.1)+- Cos(p + P - l)% + ( -1)~-p =

1
2

$nlzp - WJ-’J’+‘- ‘d+ ( -’)’:

The coefficient is zero if p # w, and equal to ~ if

1%=-*~%n sin(2p~j)m+(-~)p-’
m.1

p = W. Hence

1
% (11.6Y)

This procedure may be applied to the calculation of the derivative
of a periodic function. In this case, ~ = -m. Applying formula (11.6’7),

one obtains
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‘=(-’)’-’+=3(11.68)

2.3.3.4 - Remarks on the Employment of the Suggested Methods.- In
order to convey some idea of the accuracy of the proposed methods we
shall give first of all a few exsmples where the desired results are
theoretically known.

Let us take as the pair of functions P(e), Q(6), the functions

P(e) =4cos2e-4cos ‘+1 Q(e) = -4 sin e(2 cos e - 1)

(5 -4 cos e)z (5 -4 cos e)z

which are the real and imaginary parts, respectively, on the circle of
radius 1 of the function

f(z) = 1 (z = eie
(2Z -

)
1)2

One will find in figure 22 the graphic representation of the func-
tions p(e), Q(e) and of the derivative Q’(e) of this function, and

also the values of these functions for 6 = ‘~ (with p ranging

between O and 12). Furthermore, one will find in figure Z3 the values
of Q(e), calculated from P(f3) as starting point, by the method just
explained (coefficients ~, defined by equat~on (11.61)), and in fig-

ure 24 on one hand the values of Q’(e), calculated from P(e) as
starting point (from coefficients 1$ defined by equation (II.65)),

and, on the other, these same values calculated from Q(e) as starting
point (coefficients 1$ defined by equation (11.68)). One will see

that the accuracy obtained is excellent although the selected functions
show rather rapid variations. Such calculations by means of customary
calculation methods are a delicate matter; this is particularly obvious
in the case of the Poisson integral which is an integral “of principal
value.” Systematic comparisons of the method of trigonometric operators
with those used so far have been made by M. Thwaites (ref. 23); they
have shown that this method gives, in certain calculations, an accuracy
largely superior to any attained before.

The calculation procedure, with the aid of tables like the one
represented (fig. 25) is very easy. One sees that one fills out this
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table parallel to the main diagonal of the table. With such a table,
about one and a half hours suffice for a Poisson integral if one has a
calculatingmachine at his disposal.

We have had occasion to point out that the accuracy ofthe method
obviously increases to the ssme degree as the functions one operates
with are “regular” and present “rather slight” variations. This leads
in practice to two remarks which are based on the “differencemethod”
and reasonably improve the result in certain cases. We shall, for
instance, discuss the case of the Poisson integral.

(1) If the function P(e) presents singularities (for instance
discontinuitiesof the derivative for certain values of 0), it will be
of interest to seek a function Pi(e), presenting the sane singularities

as the function P(e), for which one knows explicitly the conjugate
function Q1(9). One will make the calculation by means of the func-
tion P(e) - Pi(@); this function no longer presents a singularity.

(2) If the function P(e) has a very extended range of variations,
one will seek a function Pi(e) for which one knows explicitly the

function ~(e) sothat the difference P(e) -Pi(e) remains of small

value, and one will operate with this difference.

Finally we note that, if the calculation of the derivative of a
function P(e) as described above necessitates that P(e) be periodic,
one can always return to this case, applying, precisely, the “difference
method.”

2.3.4 - Example: Numerical Calculation of a

Flow about a Semicircular Cone

As an application, we have taken up again the case of the semicir-
cular cone studied in section Z.Z.9. The function g(?) is given by
the formula (11.48), and g’(~) will be calculated by a Poisson inte-
gral. Figure 26 shows the value g’(~) thus calculated compared to the

theoretical value25.

‘%e wanted to test the accuracy of the proposed method by assuming
an extremely unfavorable case, without taking into account the singu-
larities presented by the function g(~). For a numerical operation of
great exactness, this particular case would have required application
of the lmmna of Schwartz, with the contour (C) completed symmetrically
with respect to OX.

~-



78 NACA TM 1354

It is then possible to calculate the representation of the pres-
sures, by calculating successivelythe function H) ZH, and the inte-
gral g’(~).

One will find the pressure distribution thus calculated in fig-
ure 19; one may then compare the result obtained by the calculation
method (for a very unfavorable case) with the result obtained
theoretically.
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CHAPTER III - CONICAL FLOWS 1NFINITEL% FLATTENED

IN ONE DIRECTION

._

The purpose of this chapter will be the study of conical flows of
the second type (see chapter I, section 1.2.6). Before starting this
study proper, we shall make a few remarks concerning the boundary con-
ditions. The conical obstacle is flattened in the direction 0X1X2.

Under these conditions, reassuming the formula (1.2T)

I.p%l‘ -Vx’ 1
3 (‘~x3x2’ - X2X3’)(1 + U)

one may say that it reduces itself, in first approximation, to

WX2‘ 1 (‘;X3X2’ - ‘2X31)

(1.2’7)

(111.1)

since x ,
‘3” “ u

are infinitesimalsof first order, while ~

and X2’3 are not infinitesimals. Under these conditions, one may say

that one knows the function w on the contour (c). On the other hand,
one may write, within the scope of the approximationsmade, this boundary
condition on the surface (d) of the plane 0xlx2, Projection of the
cone obstacle on the plane. Let us designate, provisionally, the

value w by W(1)(Xl~X3) ifone operates

J1’~@2(tLx@J =w(l)~l+)jq +

With the derivatives
first order, and the
of second order, the

as follows

x,(t) ~(’)~,,x,(t),q

3

of w being, by hypothesis, supposed to be of
boundary equation written with neglect of the terms
intended simplification is justified.

Various cases may arise, according to whether the cone obstacle is
entirely comprised inside the Mach cone (fig. 27), whether it entirely
bisects the Mach cone (fig. 28), whether the entire obstacle is com-
pletely outside the Mach cone (fig. 29), or whether it is partly inside
and partly outside the Mach cone (fig. 30). In each of these cases
there are two elementary problems, the solution of which is particularly
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interesting: the first, where the relation (111.1) is reduced to

w . constant = w
o

which we shall call the elementary lifting problem (the corresponding
flow is the flow about a delta wing placed at a certain incidence); the
second, where the relation (111.1) is reduced to

W.w o for X3 = +0

W=-w o for
‘3

= -o

}

which we shall call the elementary symmetrical problem. This is the
case of, for instance, the flow about a body consisting essentially of
two delta wings, syrmnetricalwith respect to 0X1X2 and forming an

infinitely small angle with this plane. It is also the case that will
be obtained, the section of which, produced by a plane parallel to 0x2x3,

would be an infinitely flattened rhombus. The fact that one obtains the
same mathematical formulation for two different cases indicates the
relative character of the results which will be obtained. In the case
of the symmetrical problem one may naturally assume that w is zero on
the plane 0X1X2 at every point situated outside of (d).

Let us finally point out that very frequently the obtained results
do not satisfy the conditions of linearized flows; in particular, the
velocity components and their derivatives will frequently be infinite
along the semi-infinite lines bounding the area (d). However, we admit
once more that the results obtained provide a first approximation of the
problem posed above, in accordance with the remarks made in section 1.1.3
of chapter I.

3.1 - Cone Obstacle Entirely Inside the Mach Cone

3.1.1 - Study of the Elementary Problems

The case of the lifting cone has already formed the subject of a
memorandum by Stewart (ref. 10); however, the demonstration we are going
to give is more elementary and will permit us to treat simultaneously
the lifting and the symmetrical case.
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3.1.1.1 - Definition of the function F(Z).- We shall make our
study in the plane Z. Let A’A(-a,+a) be the image of the cut of the

surface (d)26,
()Co , as usual, the circle of radius 1 (fig. 31).
.

Naturally, we shall operate with the function w(z). One of the
conditions to be realized which we shall find again everywhere below is

that dW/dZ must be divisible by (Z2 - 1), unless the compatibility
relations show that U(Z) would admit the points Z = *1 as singular
points which is inadmissible. Thus we introduce the function

(111.2)

and we shall attempt to determine F(Z) for the symmetrical as well as
for the lifting problem.

F(Z) is a homomorphic function irisideof the domain (D), bounded
by the cut and the circle (Co); the only singular points this function

can present on the boundary of (D), are A and A’; on the other hand,

F(Z) must be divisible by Z2, unless U, V, W have singularities
at the origin. On the two edges of the cut F(Z) must have a real zero
part. On the circle (co)

z 1 1=— .
z2_~ z_& 2i sin e

z

Consequently, F(Z) has a real zero part on
(co)

as well. The fact

that F(Z) cannot be identically zero, and that its real part is zero
on the boundary of (D), admits A and A’ as singular points. We
shall study the nature of these singularities.

3.1.1.2 - Singularities of F(Z).- Physically, it is clear that A
and A’ cannot be essential singular points. Let us therefore suppose
that, in the neighborhood of Z = a, one has

260ne assumes, as a start, that the problem permits the use of the
plane oxlx3 as the plane of symmetry.
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,

F(Z) * Z&(

mO being arbitrary, ~+ O; let us

a)%)

put

with Q being equal to -l% on the upper edge of the cut, to -n on
the lower edge; small values of rfor sufficiently

%
rmoe%fl and

must be purely imaginary quantities; thus

GO Cosmofl and for

%
r%e-%~

the same will hold true for

i% sin mom;
o

/

$2 ‘ Kfn)os2~ - (%0 ‘in ~)2

is therefore real. On the other hand

must be real which entails

Thus
integral;

or else

there are two
either

~=k,

sin 2mofi= O

possibilities; let us denote by k an arbitrary

%
is purely imaginary

m. =k+$,
%

is real.
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Let us now consider

83

Fl(z) =F(Z) - &(Z -a)mo

In the neighborhood of Z . a

F1(Z) - ~l(Z - a)ml

and the

one may

same argument shows that 2ml must be an integral. Finally,

state the”following theorem:

Theorem: Inside of ()co the function F(Z) may assume the form

F(Z) = O(Z) + 1

v ‘(z)

(111.3)

with O(Z) and 4(Z) admitting no singularities other than the poles

at A and A!.

The
symmetry

analysis we shall
conditions which

Obviously, X in w(X,Y)

make will be simplified owing to certain
F(Z) satisfies. Let us put

W=w+iw’

is even (when Y is constant).

Consequently, F(Z) has a real part zero on OY. Applying
Schwartz’ principle one may write

F(Z) = -~(-~) (111.4)

This equation shows that knowledge_of the development of F(Z)
around Z = a immediately entails knowledge of F(Z) around Z = -a.
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3.1.1.3 - Study of the case where F(Z) is uniform [w(z) = o].-
Let us consider the function

A.Jz) =
iZ2P

~a2 - 22)(1 - a’zzyp

(111.5)

with p an integral and z1.

This function satisfies all conditions imposed on F(Z).

Indeed, it satisfies equation (111.4); inside of Co() it does

not admit singularities other than a and -a which are poles of the
order pl. Its real part is zero on the cut as well as on ()

Co , as

one can see when writing

Finally, the origin should be double zero (at least).

Let us assume F(Z) to be the general solution of the problem
stated; we shall then demonstrate the following theorem:

Theorem: If F(Z) is uniform, one has

with n being an integral, and the

~z’P

~a2 - Z2)(1 - a2z2]p

(111.6)

being real coefficients.

In case F(Z) is assumed to be a solution of the problem having a
pole of the order n, one can determine a number hn so that

F1(Z) =F(Z) - Xn~(Z)

will be a solution admitting the pole Z = a only of an order not
higher than (n - 1) at most. But in consequence of equation (111.4),
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F1(Z) will allow of Z = -a as pole of, at most, the order (n-l).

Proceeding by recurrence, one finally defines a function

Fn(Z) = F(Z) -: ~A@

which must satisfy all conditions of the problem and be homomorphic
inside of (Co). The boundary conditions on the circle and on the cut

entail Fn(Z) to be a constant which must be zero because Fn(Z) must

become zero at the origin.

3.1.1.4 - Case where O(Z) = O.- We shall study the case where
O(Z) = O in a perfectly analogous manner.

Let us put

f(z) = d(a’ - Z’)(1 - a2Z2)
z

F(Z)

f(Z) is a uniform function inside of (Co) which admits as poles only

the points (Z = -a, Z = a). Actually, the origin is not a pole since,
according to hypothesis, F(Z) is divisible by Z’. The function f(Z)
possesses the following properties: It is imaginary on the cut, real

‘n (co)) ‘d re:;)on
OY (which entails properties of symmetry if one

changes Z to . Moreover, f(Z) admits the origin as zero of, at
least, the order 1. All these properties appertain equally to the
functions

P is an integral ~1.

Thus one deduces, as before,

iZ2P-1(Z2 - 1)

E
a’ - Z2)(1 -

1
a2z2) p

the theorem:

Theorem: In the case where O(Z) = O, one may write

I -. .
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F(Z)=i~~

1 P -Z’)(1- AJp+:
with n being an integral, the ~ being real.

(111.T)

3.1.1.5 - The principle of “minimum singularities”.- The for-
mulas (111.6) smd (111.7) depend on an arbitrary number of coefficients.
The only datum we know is the Wo, the value w assumes on the upper

edge of the cut. Thus we have to introduce a principle which will
guarantee the uniqueness of the solution of the problems we have set
ourselves. This principle which we shall call principle of the “minimum
singularities”may be formulated in the following manner (it is con-
stantly being employed in mathematical physics):

When the conditions of a problem require the introduction of func-
tions presenting singularities, one will, in a case of indeterminate-
ness, be satisfied with introducing the singularities of the lowest
possible order permitting a complete solution of the posed problem.

In the case which is of interest to us, this amounts to assuming
n = 1 in the formulas (111.6) and (111.7). For the problem of interest
to us, this principle has immediate significance; it amounts to stating
that F(Z) and hence dW/dZ must be of an order lower than 2 in
l/z - a, or W(Z) must be of an order lower than 1 with respect to that
same infinity;.the considerations set forth in section 2.2.1’show that
these conditions entail the total energy to remain finite.

3.1.1.6 - Solution of the elementary symmetrical problem.- Let us
turn again to formula (111.6); one deduces from it, according to equa-
tion (111.2), that in the case where F(Z) is uniform

dW_ . ikl
Z2-1

dZ
(a2 - Z2)(1 - a2Z2)

and hence

ikl
w(z) = ( )( )

2a(l +a2) 10g (: ;;)(; i:;) ‘Wo

. . . . . . . .. -—.-. .
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The determination
is zero on (%)”
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of the logarithm is just that the real part of w(z)
Besides

2a(l +-a2)wo
Al. .

Yt

On the upper edge of the cut

snd on the lower edge
the case investigated

w= Wo

w assumes the opposite value. This shows us that
is that of the symmetrical problem. The value W(Z)

for this problem is therefore

[
w(z) =-:log (a-z)(l-az !(a+ Z)(l+aZ) ‘Wo (111.8)

The calculation of the functions U(Z) and V(Z) offers no diffi-
culty whatsoever. It suffices to apply the relationships of compati-
bility (1.25) and to integrate; the only precaution to be taken consists
in choosing the constant of integration in such a manner that the real
parts of U and V on ()co become zero; one then finds

(V(z) =y+a 2,
[ 1

log (a+ Z)(l -aZ)

(1
- ~2) (Z - a)(l +aZ)

(111.9)

and

2woa
u(z) =— log[1Z2 -a2 (111.10)

fi~(l- a2) 1 - a2Z2

This last formula is the most interesting one since it permits calcula-
tion of the pressure coefficient (see formula (1.8)). One finds

kwo a

[1

a2 - X2-—
CP =

log
‘iP1-a2 1 - a2X2

(111.U)
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In order to interpret this formula, one must comect the quanti-
ties a, X, to geometrical quantities, related to the given cone. First
of all

‘o =a

u being the constant inclination of the cone on Ox. On the other
hand

2x-’DA=Dtmu.l

whence

1+

x=

X2 xl

p sinu

(see fig. 32) and

dcosLDo-l- M2sin2mo
a=

~ sinmo

In figure 33 one will find the curves giving

(111.12)

the values of CP as

functions of u, for various Mach numbers and various values of ~.

3.1.1.7 - Solution of the elementary lifting problem.- If one
starts from the formula (111.7), one obtains

The integration which yields

(Z2 - 1)2

La’ - Z2)(1 - azzz]~

W(Z) introduces elliptic functions (see
section 3.1.1.8); on the other hand, it will (now) be possible to cal-
culate u(z). We note beforehand that, according to the preceding for-
mula, W(Z) assumes the same value on the two edges of the cut and
that, consequently, this solution corresponds to the lifting problem.
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The relationships of compatibility show that

w ...

and hence

2L~
u(z) = - Z2+1

p(a’ +1)2
[a2-z’) (1-a@ “11”13)

We still have to calculate Al as a function of WO. For this

purpose, one may write

We put in this integral Z = iu

The calculation
(see ref. 24).

J
1

. )“1 (1 + u’)2du = AII(a)

k
az

o +u2)(l+a2u2 ;fl

of I(a) can be made with the aid of the function E
We shall put

U+L.?
u t

After a few calculations one obtains

1
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Finally, the change in variable
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sin P =
t(az + 1)

a2 + (a2 . l)2t2

shows that if one puts

k=l-a~

I=

Hence the

1+

~2(a;, ,)J’’J==
new formula for u(z)

u(z) = - :
a2wo

()
(a2 + l)E 1 - a2

l+a2

We still have to connect a and
One has (fig. 32)

2a = ~ tanmo
l+a2

Z2+1

~=L2- Z2)(1- a2z2jji‘111”
Z to the geometrical quantities.

2x =~tanm
1+X2

One puts

t=tanm—.—
tan m.

and obtains.

wo tan wo 1u=-_ —
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and

91

-,- -c’‘E’[&=k&
if one puts, as usual

●

(111.15)

‘o =CL

If U. is small, E~-j is close to 1, and the for-

mula (111.15), except for the notations, again gives a result found
before (formula (11.33)).

On the other hand,if PtanmO--+l

E~~]

and the formula (111.15) is written

Cp=k 1
‘“F=

Remark.

Thus one sees that the elliptic functions need not be used in an
essential manner in order to obtain the pressure coefficient. Actually
they appear only in the multiplicative coefficient. (In contrast,
Stewart, in his demonstration (ref. 10), makes essential use of the
elliptic functions.) However, these functions are indispensable in the
explicit calculation of W(Z) and V(Z).

3.1.1.8 - Calculation of W(Z) and V(Z).- There exist severs2

simple methods for calculating W(Z); the first consists in putting2T

2TFor all the properties of the elliptic functions made use of in
this report, see for instance reference 24. In this paragraph, u will
be a complex variable and will have no relation to the velocity compo-
nent along Oxl.
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()Z =a sn u,a2 (k = a2) (111.16)

This transformation achieves the conformal representation of the
domain (D) ona strip of the plane u (see fig. 34); the values
written inside of small circles indicate the values of Z taken for
the corresponding value of u.

One has actually

snO=O snK=l

‘n(*“)=i “(%’k’)‘ * =:

sn(K + ~) = cd(%)

Under these conditions

2
dW_dWdZ_ ih1(Z2 - 1)

.—— —
% dZ du

(az - Z2)(1 - a2Z2)
.

— —

~[

121 11%1+1j-~l---a 1 1=—:2 —-—
1 + ~2 Z2 - ,a2- a2(a2z2 - 1) a2 dn%l 2cn u

whence

iAl

[

4
w(u) = W. + 2(a2 )+lu- 2E(u) +

1

a sn u cn u + dnu sn u

( )
~2a2+12 dnu cn u

(111.lY)

For determination of xl) it suffices to write, for instance, that

()
w~ =0

2
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Now

() ikl~~ .
2 [) (]

a2+li(l+K’)-2E~ +WO=O
a2(a2 + 1)2

However,

()2E iK’ = iK’
F + 2i ‘i(%k’)sc(:’k’) - 2m(%~k’)

b(%k’)sc(%k’)=‘

()2E K+! = klz
E(K’,k’) + ~

2

whence the value Of Al

woa2(a2 + 1)2
h = a2K1 + E(k’)

This expression differs from the formula

course of section 3.1.7; besides, one may, in

given for

a general

formula (111.17) in another form (using a modulus kl =

is different from the modulus k = a2 utilized so far)
the Landen transformation.

93

manner, put the

1 2 which-a

l+a2

by applying

This transformation permits, in particular, establishment of the
following formula

[ 1
1E (1 + k)u,kl = —

c 1
2E(u,k’) + 2ku - k’2sn u cd u

l+k

with the functions of the term at the right of the preceding equality

Jbeing relative to the modulus k’ = 1 - a4.
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If one puts

this formula is written

E

U. j-y

1‘4” “)’ - 2’(’)’)‘2:::” y-Cnni
(1 + k)iy,kl
L J L

These last functions are relative to the modulus k = a’.

However,

2dnysny-k2 sn y =
cn y cnydny C:%YF ‘2’ - ’17=

sn y
( )k2cn2y + dn2y

.a4snycny+dnysny
cnydny any cn y

If one now refers to the formula (111.1’7),one sees that it may
also be written

w(u) = w~ + ‘1

( ) [ 1
E (1 + az)iu,kl

a2a2+l

and that under these conditions

()Wi+ .wo-
a2(j’+1) ‘F’+’’)K’)kil‘0

However, K1 = ~i s precisely such that
2

‘n(%”l)=‘
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Consequently

which is, of

One may

-L

course, the formula

wo*2(a2 + 1)
h, =

()E:; $

found previously. Hence

[

w(u) = Wo 1 + [ 1
E (1 + a2)iu,kl

E(%)
(111.18)

also proceed in another manner, introducing a variable
other than the variable u.

We put

t = ~y
-1

The integration of ~

‘o -

We put

The

w(t) =

complementary

leads to

kl=~
l+a2

modulus is 2a

1 +a2”

95



96 NACA TM 1354

If one puts, therefore

t = cn(T,kl)

4?q
W(T) =Wo+

!
T dT—=wo -

(a2 + 1)3 ~~ d112T

Al

[

E(kl) - E(T,kl) + H sn . cn :
(

~2a2+~
) (1 + a2)2 M T

If Z=i, t=l, T = O, one always still finds the same value
for Al

and

The formulas (111.18) and (111.19) are indicated for the calcula-
tion of W along the axis OY, whereas equation (111.17) is more suit-
able for the calculation of W along the axis OX. We now turn to the
calculation of V(Z). The calculation with the aid of the variable u
is particularly simple. dV/dZ is calculated with the aid of the rela-
tionships of compatibility

w a2(a2 + 1)
dv=-o
dZ E(kl)

Let us recall that

kl . 12-a
l+a2
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and perform the change in variable (111.16). We obtain immediately

dV wO(a2 + 1) 1 . a4sn4u
—=
du E(%) cn2u dn2u

but V must be zero for u = O. The integration of dV/du then gives

(v(u) =Wo a
2+1)

E(%)

We verify, for instance, that for Z =

Z = i corresponds

()sn~=
2

sn u (111.20)
cnudnu

i, V has a real part zero,

i—
a

‘n(’)=dc(~,kt)={-” k =a2)

()One can state that V ~ is purely i3naginary.We shall not give

another formula for the calculation of V(Z); the formula (111.20) which
is particularly simple (it does not make use of the function E) permits
the-calculation of -
on OY.

3.1.2 -

v on the axis OX; on the other hand, v is-zero

Study of the Case Where the Cut is Not

SymmetricalWith Respect to OY

3.1.2.1 - General Principle.- The case where the cone investigated
does not admit the plane ‘xl“3 as the symmetry plane is easily led

back to the preceding by a conformal representation,maintaining the
circle (co)”
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Let us suppose, for instance, that in the plane Z
is represented by a cut along the se~ent (b,c) of the
fig. 35); the conformal transformation

z - al

‘l=l-UIZ

the obstacle
real axis (see

(111.21)

where al is a real number
(1 I )

<1 maintains definitely the real

axis and the circle (co)” ‘1We shall attempt to determine the numbers al

and al in such a manner that Z = c corresponds to Z1 = al, Z=b

to Zl = -al. One must write

c - al b - alal . -al =
1- %lC l-alb

al is determined by the equation

c-h b-%l=o
1 - alc ‘l-alb

which gives

J(l+bc-l-al = b2)(l - C2)
b+c

(we note that, if b + c = O, al = O).

One will then determine al by one of the two formulas described

above or by the formula symmetricalwith respect to b and c

a relationship which one may find directly by writing

(
l,-l,al,-al)(= 1,-l,c,b)
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In particular

1- a12
.

1 + a12
/“”

99

~(1 - b2)(l - C2)
1 - bc

3.1.2.2 - SW etrical problem.- It will now be very easy for us to
study the case of the symmetrical problem (that is, the case where w
assumes the value W() on the upper edge, and the value -Wo on the

lower edge of the cut).

The formula which gives W as a function of z~ is written (for-

mula (111.8))

[ 1w(z~) = -:logal - ’11 ‘alzl +Wo
al + Z1 1 + alZl

whence

iwo
w(z) = - —

[[
log (c - Z)(l -

7( “Y’041b-z)(l-m) ‘Wo1]

(111.22)

V(Z) and U(Z) are obtained by the compatibility formulas

dY=- w& (Z2 + l)(b - C)(I - bc)
dZ fl (C - Z)(l - ZC)(Z -b)(l - Zb)

whence

[

Wo 1 + C2v(z) = - — log - - l+b210gZ-b

fll-cz 1 ‘Zcl-b2 1
1

- Zb

Finally

dU _ 2W0 (b -C)(I -bc)Z
_—

z ~fi (c -Z)(l -Zc)(z-b)(l - ~)
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whence

[

u(z) = = c I( )’O’=-+’O’=.— (111.23)
fiP1-c2

Naturally, one could have obtained these expressions directly, by
a reasoning analogous to the one made before in the sections above
(3.1.4, 3.1.5, 3.1.6).

We remark that this problem possesses a property of “additivity”
which is, besides, evident from the outset but is entirely obvious in
the formulas (111.21), (111.22), (111.23). This means that, if one
knows the solution.of the problem for a segment bc and the one rela-
tive to a segment cd, one obtains the solution relative to the seg-
ment bd by adding the given solutions. Also, we point out that in
the preceding formulas the manner of determination of the logarithms
should be conveniently chosen.

3.1.2.3 - Lifting problem.- We shall be satisfied with the calcu-
lation of the function U(Z). Let us put in this paragraph

1 - al2
kl = J 1 - b2)(l - C2)

=
1 + a12 1 - bc

One has

dW _ ‘wOal (2 al2+1 ) (
Z12 - 1)2

—_
dZ1 E (kl)

[ 1

2
al2 - Z12)(1 - a12Z12 2

dZl 1 - U12
—.
dZ

(1- a1Z)2

whence one obtains very easily

&J= 2W0 al (21+a1 )2 (1 + c)3(1 -b)3 Z(Z2 - 1)

dZ ~E(kl) (1 + al)6

[
(c - Z)(z - b)(l - bZ)(l - Czg$

.. .............. . . .. ... #.. !-— . ..-—! -..!.. —1.. .! 1. . I . . . .!!... ..!. im -! .-. .!---- -- ! .m!m..!.!..-. - . . .... .---- ——.—
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The eq=lity

101

(+”1)=(-al’-:Ja+
is written

-b . 2al
F=c

1 - bc 1 + a12

and if one forms the combination
(F + 1)3, one may deduce from it the

F2

identity

(1+ C)3(1 -b)3 =

(c - b)2(l - bc)

which permits one to write

(1 + al)6

4a12(1 + a12)

dlJ= ‘0 (b - ‘)2(1 - bc)
Z(Z2 - 1)

dZ 2~E(kl)
~’ - Z)(Z - b)(l - bZ)(l - ‘z~;

The integration is easily made, with the aid of the elementary functions

W()
u(z) =

2bc(Z2 + 1) - (b + ‘)(1 + bc)Z (111.24)
BE(kl)(l - b’) Z)(Z - b)(l -bZ)(l - ‘z)

3.1.2.4 - Lift of a delta wing.- The total energy on an obstacle
will be obtained, in a general manner, by integration of the pressures.
However, the lift may be calculated by means of a very simple general
formula which we shall set up.

We shall start from the formula

Cp = -214J(zjj



--- . . ——

102 NACA TM 1354

Let us consider an elementary triangle (MM’ (see fig. 36), with

M having the coordinates (~~%~o);i’sareaisequa”o ** ‘ne

has, by definition of Cz

which in the plane z is written

c= =
JL Cp ‘z

In z, k and v are the images of the limiting generatrices of the
obstacle, L is the loop surrounding the cut (A,v). If one denotes
by (L)” th~ loop surroundingthe
one has, since

x= 2x

1+X2

corresponding cut bc in the plane Z,

(Z=X+iY)

~ ]p

—

-4~ Lu(z) 1 -
~2 dz = _kR

U(Z) 1 - ‘2 dZ—
(1 + Z2)2 co ‘ (1 + zq2 —

with
()
co‘ denoting the circle of the radius 1, modified in the neigh-

borhood of i and -i by two small arcs 11’, mm’, in order to avoid
the singular points (see fig. 37); the arrows indicate the direction of

the course. Along the circle (%), (z= eie)
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1- ~2
dz=- 2isin6idEl= ‘in o de

(1 + Z2)2 4 Cos% 2 Cos%
-.

and since

one deduces
points Z =
but one can
cular arcs

103

that the integral is zero along the arcs 2’m’, m2; the
fi are double poles of the quantity that must be integrated;
easily see that
11’ and m’m.

and R-i the remainders of

the integral remains finite along the cir-
Exactly speaking: if one denotes by Ri

the function

u(z) 1 - ‘2
(1 +Z2)2

at the points Z = i and Z = -i, one has, since

P--
2b1.= 2C -—=

1+C2 l-bz

c= =+2 (1+b2)(l + C2)
(c - b)(l - bc)

2(c - b)(l - bc)

(1 +bz)(l + C2)

However,

ldUz_i)
2=( “- ‘-’= -i%(Z =-i)

Ri =-_

whence

cz=- (1 +b2)(l + C2)

[[

~i~ +~

1]

n
(c -

(111.25)
b)(l - bc) ‘(z.i) dZ(z=_i)
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One can also express Cz as a function of the values of dW/dZ

at the points i and -i

c= =

One may finally

IT(1+ b2)(l + C2)

B(C -b)(l -be) ~

remark that

dw ._

[

i~ _~

dz(z=i)
1

dz(~=.i)
--l

dz(z=i)
i ~(0,1)

(111.26)

whence

[ 1x(l+b2)(l +C2) &(O,+l) - ~(o,-1)
Cz = (111.27)

P(C -b)(l -be) bY

We shall apply this result to
studied in section 3.1.2.3:

dU . -i ‘O

‘z(Z=i) ~E(kl)

the case of the lifting delta wing

(b -c)z(l -be)

L +b2)(, + cm
whence

L -1

CZ=-2M -b

r

--.— .————_
~(kl) (1 +:2)(1 +C2)

with kl being equal to

In the wing theory, one designates the incidence by i; with the
usual notations one has here

U=-i
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The desired formula Cz(i) is

c -b
Cz = ;:l) ~~

In the case where b = -a, c = a, one finds

or again with the ndtations of figure 32

2n tan ~
c. =
-L

A few applications of

If UO is small, one

tion 2.2.4 (except for the

E(..IGZXJ
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(111.28)

i (111.29)

this formula may be found in figure 38.

will find again the result obtained in sec-

notations)

Cz = 2nuoi

3.1.3.1 - Study of the general case.- So far, we have treated only
the elementary cases, that is, those for which the function w assumed
a constant value on each edge of the cut. We shall now treat the case
where the function w assumes on the upper edge of the cut prescribed
values

w = WI(X)

and on the lower edge prescribed values which we shall note

w = W2(X)
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Let us note,
lem may always be
tions of a purely

Wl(x) + W2(X)
on

2

problem (with w

edges of the cut)

NACA TM 1354

first of all, that the solution of the general prob-
considered as the result of superposition of the solu-
lifting problem (with w

each edge of the cut) and

assuming opposite values

assuming the same value

of a purely symmetrical

+Wl(x) - W2(X)
— on the two

2
. Thus we shall be able to limit ourselves to these

tw; types of problems. We shall note, in addition, that in the purely
symmetrical problem u assumes the same values on the two edges of the
cut, whereas it assumes, in contrast, opposite values in the case of a ,
pure lifting problem.

A first idea for the treatment of this problem consists in utilizing
the elementary solutions found before and in superposing them conven-
iently. Let us consider, for instance, for a symmetrical problem, an
elementary wing of infinitely small span, the image of which in the
plane Z is a segment of the real axis of the length AX, situated in
the neighborhood of the point X, and let us assume w = w(X) to be the
value corresponding to w; the complex velocities of this flow are given
by the formulas (111.21), (111.22), (111.23);using the hypotheses made,
one may write, designating the complex velocities by AU(Z), N(Z),
Aw(z),

[

iw(x) d Iog(x - z)(1 -
AW(Z) = - ——

dx 1
Zx) Ax

X

[

w(x) d 1 + X2
AV(Z) = - —— log

1

x-z&
1-tdX1-x2 1-ZX

[

2w(X) d X
AU(Z) =—— log

1

X-zm
Ilp dX1-x2 1-ZX

One arrives at writing the solution of the symmetrical problem in
the form
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(111.30)

The integrals occurring in these formulas make sense only if Z is not
on the segment bc. If Z is real and comprised between b and c,
one has to take the “principal value” of these integrals. Furthermore,
one must demonstrate, in order to justify these formulas, that the real
part of the function W(Z), defined by the first formula (111.30), actu-
ally assumes the value w(X) when Z is real (z=x).

For this purpose, one calculates W(Z) in a point of Z = X + iq
(with rI being positive and small) by dividing the integral appearing
in the first formula (111.30) into three parts

After this has been done, one chooses c and ~ in such a manner that
the last integral is arbitrarily close to the value

which is possible since this integral may be

f

‘+GW(E)(l - Z2)2

‘-e (E.-Z)(l - Ez)

written

‘E
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One may then, diminishing as necessary the upper limit fixed for q,
choose-that last number so that

E[-,[Jx-’+ ~:]]

should be arbitrarily small. There is no difficulty whatsoever

the quantity under the sign
J

is continued in Z. Finally,

made arbitrarily close to

since

I may be

inw(x)

which shows that, if ~ is sufficiently small

+(z)l - w(x)

is arbitrarily small which had to be demonstrated.

This procedure, while theoretically simple, is rather delicate in
practice since the calculations to be made affect the integrals, the
principal value of which has to be taken. In the lifting case, on the
other hand, the application of this method would require previous solu-
tion of an integral equation of a rather complicated type. For that
reason we prefer to give the following calculation methods; the first
utilizes the “electric analogies;” the second which is purely numerical
will reduce the numerical calculation to that of a Poisson integral; in
section 2.2.7 we have given a simple and accurate procedure for solving
such a problem.

3.1.3.2 - Utilization of the “electric analogies
I!28

.- The analogy
consists in identifying the harmonic function w X,Y) with an electric
potential 9(X,Y), through a conductor constituted by a liquid occupying
a tank with horizontal bottom of half-circular shape (see fig. 39). On
the circular boundary w is constant; consequently, the semicircumference
will be brought to a constant potential; it will be possible to regard
that potential as the zero of the scale of potentials. This circumfer-
ence will, therefore, be conducting; (this half-circle is nothing else
but the part of the circle ()co of the plane Z for which Y> O).

2%or all questions concerning electric analogy, see the fundamental
memoranda by M. Malavard (refs. 25 and 26).
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On the cut bc which represents the conical obstacle, one distributes
electrodes which will be brought, by means of adjustable potentiometers,
to the given potential P. For specification of the boundary condi-
tions-on the segments A’b and .cA, one must distinguish between the
synnnetricaland the lifting problem.

3.1. 3.2.1 - s~ etrical problem.- w must be zero on the portions
of the axis outside of the cut; consequently, the corresponding bound-
aries of the tank are brought to the potential zero, that is, to the
ssme potential as the semicircumference A’BA; w is given directly
by a pure Dirichlet problem. However, the unknown of our problem is
the v&e of the pre=sure

u is connected with
which permit one to.write

along the segment bc, that is, ‘u.

w by the relationships of compatibility
on the axis pf the X

@l_ 2x &
ax ~-x2aY

with ~w/bY being proportional to the intensity entering the tank
through the electrodes; this quantity is easily measured with the aid

of a convenient arrangement29. With the value of &/~X thus knOWIl,
we must, in order to obtain the desired pressure distribution, determine,
in addition, a value of u along bc, for instance the one at the

point 03°. On the axis OY one may write

290ne may, for instance, feed the electrodes of the cut through
resistances R, insuring a drop of the potential from ~ to V (see
fig. 39). Under these conditions, one has a relation of the form

with k(X) being a function which depends on the chosen resistances
and on the resistivity of the tank, but can always easily be obtained;
the manipulation to be perfomned is then as follows: after the resista-
nces R have been determined, one has to choose the values of T in
order to obtain at the electrodes the values of q) prescribed by the
boundary conditions.

30We shall assume the point O to lie on the cut. In the opposite
case the procedure indicated here may be very easily modified.
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~k=. 2Y &
bY ~+y2aY

Since u(X,Y) is zero at the point B(O,l),

s1

pu(o) = 2t @O,t)dt =
o l+tz~y

J

1
2 W(ozt) 1 -

t2 ~t

o (1 +tz)z

Hence

-1
2Y W(o,t) -

J+Y2 -o

J
1

pu(o) = -2 W(o,t) 1 -
t2 dt

o (1 + t2)2
(111.31)

One will know u(0) by means of a simple integral if one knows the
distribution of the w (the same as that of the ‘?)on the axis OY.
Since this may very easily be determined, the problem .isentirely solved.

3.1.3.2.2 -Lifting problem.- The boundary conditions to be realized
for the lifting problem are the same as for the symmetrical problem as
far as the semicircumference A’BA and the cut b,c are concerned.
On the segments A’b and CA one must, of course, write

aW dw O—= —=
ay dn

that is, the corresponding walls will be insulating walls.

However, this is not sufficient. If no precaution is taken, the
harmonic function corresponding to the electric field thus realized will
not be a solution of the aerodynamic problem posed. Actually, there is
no reason whatsoever why the gradient of this potential should be zero
at the points A and A’, since the intensity at A and A’ is, in
general, not zero. Since the corresponding function dW/dZ is not zero
at Z = tl, we have already pointed out that this leads to singularities
inadmissiblefor U(Z) (see section 3.1.1.1).
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The investigation of the elementary lifting problem, admitting 01
as symmetry axis, will permit us to better understand the difficulty,
and to solve it. If one realizes in the tank the preceding boundary
conditions by bringing the electrodes from the cut (-a,+a) to a con-

_m.
stant potential; it is quite obvious that the potential thus realized
in the tank will remain finite at every point of the field, even at A
and A’. Thus one obtains a solution by taking for q(X,Y) the real
part of the analytic function F(Z), defined by

with A being a re’alconstant.

This solution does not correspond to the solution of the aerodynamic
problem (see section 5.1.7) which, in contrast, gives a singularity

(a2 -
-1/2

at ~2) for the function W(Z), in the neighborhood of Z = +a.
As a consequence, w(X,Y) must be infinitely large at points close to

+a and _a31. This particularity must, therefore, be taken into account
in the circuit.

It is not the first time one encounters problems of analogy with

singularities32. One knows that one must then realize in the neighbor-
hood of the points fa, a material model, partly conducting, partly
insulating, which schematizes the arrangement of an equipotential elec-
tric line and a current line.

310ne encounters there an interesting example of precautions to be
taken in a given problem when one applies the principle of minimum sin-
gularities. This principle has led us to pose, for our aerodynamic

-3/2
problem, a solution for dW/dZ in (a2 - Z2) . But if one makes
the analogy, the electric tank has no reason to “know,” a priori, that
realization of other conditions than those directly concerning w(z)
is desired. Thus it “applies” the principle of minimum singularities,

-1/2
realizing the solution for dW/dZ in (a2 - Z2) .

32See for instance references 27 and 28. For several months, the
laboratory of electric analogies of the O.N.E.R.A. has been utilizing
singularitiesfor the study of compressible subsonic flows in the hodo-
graph plane.
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In the case of interest
point X = +a, one has

NACA ‘IN1354

to us, in the neighborhood of the

‘(’) = *

with K being a real constant; consequently, if one puts

W(Z) = w(X,Y) + iw’(X,Y)

z- a = { = seio

and

w + iw’
[ 1‘$cos: -i sin:

the lines w = constant are determined by

s = so C!osZg
2

and the lines w’ = constant by

2gs = sl sin z

= So(l + Cos 0)

2

S,(l - Cos Cr)

2

so and sl being two positive constants. They are, therefore, cardi-

oids; their arrangement is given by figure 40. Also, one finds in this
figure the scheme of the singularity which must be placed at b and c.
Thus the manipulation is as follows: after the circumference ABA’ has
oeen brought to the potential zero and the boundary conditions have been
realized along the cut bc, one brings the conductive part of the two
singularitiesto rather high potentials which must be determined so that
the intensity at the points A and A’ is zero (of course, if the
problem presents the axis OY as symmetry axis, the two singularities
must be brought to the same potential, and the nullity of the intensity
at A will insure that of the intensity at A’). This one will realize,
from the practical point of view, by detaching at A (and eventually

-—. ... . . .. — ....---.. —.. .-..—— .—--.— ,. ,...... ....,-..—,...-— —---
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at A’) on the semicircumference a small electrode which will not be
fed and the potential of which will be made opposite to the potential
of the rest of the circumference, through a zero apparatus. It is this
condition which permits determination of the potential to which the
conductive part of the singularity at c (and eventually at b) must
be brought. The field 9(X,Y) realized in the tank will then, in con-
sequence of the principle of “minimum singularities,”be proportional
to the field w(X,Y) of the velocity component following 0X3.

After that, the manipulation unfolds as for the symmetrical case.
One measures the intensities along the cut (b,c) which fmnishes the
values du/dX. One determines the value of u at the point O by
restoring the field of values of w along OY and by applying the
formula (111.31).

3.1.3.2.3 - Electric measurement of Cz in the case of the lifting

problem.- In all cases, the total energy can be determined by integra-
tion. In the case of the lifting problem, one will yet have a supple-
mentary verification by utilizing the formula (111.27) which we shall
write

cz=~ (1 +b2)(l + C2)

~ (C -b)(l - cb)

Actually, this last formula permits to

$(0,1)

obtain directly the Cz, by

a simple electric measurement which gives the intensity entering at the
point B, since dw/dY(O,l) is proportional to that intensity. For
this purpose, it suffices to detach, in the neighborhood of B, a small
electrode (fig. 41) and to feed it by the intermediary of an arbitrary
resistance R. With all boundary conditions satisfied, it suffices to
regulate <V to make the potential at B zero as on the rest df the
semicircle. Cz is then proportional to ~.

j.1.3.2.4 - Applications.- The scheme of the circuit used is given
by figure 39. We do not intend to give here the details of operation,
the precautions taken for increasing the accuracy, the determination of
the scales, and the reduction of experiments. All this will form the
subject of a later report.

Here we shall give simply the results of the first experiments

made following these principles33- In every case studied, we have

33There is every reason to assume that the Satisfactory preCiSiOn
obtained could be further improved by employing a more suitable material
than the one that was utilized. These tests were made frequently with
utilization of chance setups with the material that happened to be at
the laboratory.



treated the elementary lifting case and the elementary
fication of the procedure.

(1) Elementary symmetricalproblem. a =0.6, WO

symmetricalcase which

= l.- Let us designate

permits a veri-

the corresponding

P
P
-f=

pressure coefficientby Cpo:

x I o 0.06

c
Po II1.204 1.214
experimental

Cp%heoretical
I .219 1.230

0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.585
1 f

1.248 1.306 1.400 1.518 1.692 1.946 2.340 3.140 5.160

1.262 1.318 1.402 1.524 1.694 1.946 2.336 3.072 4.640

(2) Symletrical problem: case of a lenticular cone.- If the section xl = ~ of the coni-

cal obstacle given is formed by two parabolic arcs

‘3 (= +eo k2 - x22)

with co being a positive small number (see fig. 42), the function w(X,Y) will assume on the

cut the values

(
w=60k2+x2 )

Let us recall that

k= 2a x. 2x

l+a2 1+X2



One may write the pressure coefficient

The results found have given, for a = 0.6

x o 0.06 0.12 0.18 0.24 0.30 0.36 0.42- 0.48 0.54 0.585

PI(X) 1.111 1.112 1.117 1.133 1.181 1.285 1.491 1.849 2.472 3.778 8.02

For verification,one has studiedalso the case where the distributionof w along the
axis of the X was given by

—

(W= G k2 - X2o )

The values found for the corresponding
CP

were as follows; one has put

CP
= G&2(x)

4

x o 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.585

P2(X) 0.777 0.793 0.843 0.917 1.204 1.088 1.157 1.195 1.183 1.099 0.934

P
P
(n

I



Naturally, one must verify that PI(X) + P2(X) and
2

()
2k CPO assume the same values. Now one

P
P
0

has

I x I o 0.06 0.12 0.18 0.24 0.30 0.48 0.54 I 0.585

-t

0.36 0.42

2.648 3.o43P~ +P2 1.887 1.905 1.961 2.050 2.185 2.373

2k2c
PO

1.899 1.915 1.965 2.052 2.183 2.373

,
I

I
3.637 4.783 7.232.638 3.030

(3) Elementary lifting problem W. =1, a = 0.6.-

+

0.30 0.36

1.536 1.742

x o 0.06

*

0.42

$
0.48 0.54

2.536 3.776

2.552 3.732

CPexperimental
1.196 1.208 2.062

1.526 1.724
Cptheoretical

1.192 1.204 2.030

(4) Lifting problem: parabolic cone.- w= eo(k2 +X2); one will put CP3 = COP3(X)

x o 0.06 0.12 0.18 0.24 0.30

P3(X) 1.068 1.070 1.074 1.094 1.152 1.278

0.36 0.42 0.48 ~ 0.54
I-J

1.520 I 1.956 I 2.732 I 4.636 I
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3.1.3.3 - Purely numerical methods. Utilization of the plane z.-
We have introduced this plame in section (1.2.5). Let us recall tha%
z corresponds to Z by the confonnal transformation

2Zz.-
Zz

and that in this plane the relations

-~dU=zdV=

+1

of compatibility are written

‘iz dv (111.26)
1

One of the advantages of the plane which is of practical interest
is that one has on the real axis (if z=x+iy)

x.x
2

x2 being the ordinate of a point of the section xl = j3,situated on

X3 = O, in the axis system 0xlx2x3.

Some of the formulas established before may be written more simply.
If one denotes, for instance, the image of the cut (b,c) of the
plane Z in z by (k,P), the formula (111.21) is written

‘oW(z) = -i ~log ~ (111.32)

W(z) thus appears as the complex potential due to two vortices placed
at the points L and v and of opposite intensity. Likewise, the
formula (111.24)may be written

‘oIJ(z) = ~E(~l)
2?kp- Z(A + ~)

(111.33)

~

If one puts

A=COSV p=cosu)

<.-
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~,.YEEEE .n. 1 +b2)(l + C2) 1
~in~+~

.
1 - bc

2

In the case where p = -k = k, one has, in

2k2 Wo
Cp = ~E!(k) ~~

~2-x

s-j~V+U)
2

particular

Let us recall that

(J-)E’(k)=E 1

3.1.3.3.1 - Case of the symmetrical problem.- Let us now assume
that the problem corresponding to the boundary conditions w = f(x) on
the upper edge of the cut, w = -f(x) on the lower edge has to be
solved. The formula (111.32) leads us to represent W(z) as the poten-
tial of a distribution of vortices carried by the segment Au; conse-
quently

w(z) = -* J’‘~du
Au-z

At a point of the upper edge of the cut, one has actually

w(x) = - ~
f

H f(u)du + f(x) = w + iw’
‘Au-x

with the integral taken at principal value.

Let us put on the cut

x=k+l-l+ll-~cosq— — U.A+V+I-L-?”COS6.— —
2 2 2 2

f(u) = F(e)
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Let us assume, to begin with, that

F(0) =F(fi) = O

and that F(e) can be developed in a Fourier series

m

F(e) = ~~ sin ne Oce<yt

o

Then

p

11 ~b

)sin ne sin El

w’(e)=. ~ o
lt cos e - Cos T

We shall furthermore

changeable. According to

and

J
l-t

~ sin nO sin f3de

‘o COS e - Cos T

do

admit that the

a known result

signs
z

(ref. 13)

Jlfi. -—
2Jl o

1

r(cos n - l)e -

de

and
J

are inter-

cos(n + l)e] de
=

cos e - cos V

~in(n - 1)9 - sin(n + l)VJ

2 sin V
= cos n (P

consequently

Thus one sees that w’(e) is the conjugate function of F(e) which
could have been easily established by other methods as well.
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However, according to the relation of compatibility

and

m

We shall put

n

G(9) = - ~ nAn sin n~

o

(111.34)

G(Q) is the derivative of the conjugate function of F(q). Thus one
has

(111.35)

Knowledge of F(9) entails that of G(Q) by a calculation of

trigonometric operator (section 2.3.3) and, consequently, that of au
z.

In order to set up formula (111.35),we have made a certain nunber of
hypotheses. These hypotheses will be satisfied if the derivative of F
with respect to V satisfies a condition of Cauchy-Lipschitz.

In order to calculate the pressure at every point of the cone one
must integrate the formula (111.35); for that, however, one must know
the integration constant.

The exact determination of the function u will be easily obtained
as soon as we have studied thoroughly the character of the function u(z).
We suppose first

In order to study the function U, we shall perform the conformal
transformation of the plane z, provided with cuts -m,-( 1)> (-1.b+u),
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(l, +co) traced on the real axis, on an annular corona. This is imme-
diate (see, for instance, section 3.1.7.1). Let Z1 first be a complex

variable defined by

dzl
—=
dz

or

z ‘v.n(zl,v), (k=v), then

aK’-zJz2=e

The plane z provided with its cuts then is represented on a
strip

plane

radius

In the

O<~@l) < K’ of the plane

Z2 (see fig. 43) bounded by

1 and (72)
of the radius

q.e

q ) and on an annular area of the

the circumferences (yl) of the

fiK’-—
.2K

plane Z2? U is of the form

U(Z2) =Alog Z2 +f(z2)

with f(z2) being a uniform homomorphic function inside of the annulus

(see for instance section 2.1.2.1), since U(Z2) is finite, even at

the image points of z . t~, because of the hypothesis

F(0) =F(I-()= O

We remark that f(z2) has a real part zero on the circle (yl).

We assume the value of the coefficient A to be known; on
ference

(71)’
A log Z2 maintains as constant real part

the circum-
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(111.36)

According to a well-known theorem of the theory of harmonic func-
tions (see ref. 29) one now knows that, if a uniform harmonic func-
tion H(x,y), defined inside of a circular annulus, assumes on the two
limiting circles the values To(e) and 91(9), (with @ being the

angle at the center representing the running point
has

J

2X

J

2Yt
Vo(e)de = ql(e)de

o 0

on each circle), one

This theorem will allow us to demonstrate the following theorem:

Theorem: If I-I= -h, the function u(V) satisfies the equality

J: * =2K(”)A‘og’q
K(p) being the elliptic function of first kind relative to the modulus w

In fact,

circle
()71

J
2rt

1 u
z

o

the mean value of

must be zero, but

the real part of f(z2) on the

the mean value ()of u“ on 72 reads

—

with L designating the loop surrounding the cut (-w,+P) in the posi-
tive d~rection. However, the function U(T) assumes the same values at
points which have the same abscissa on the upper and on the lower edge
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I

of the cut; consequently, this mean value is

J

u(q)d~

~:~

In order to have a mean value of

necessary and sufficient that the mean
A log q which justifies the theorem.
following manner:

If uo(q) is ~ primitive of
%

and if

f(z)

value

123

equal to

on
()?’2

of zero, it is

of u should be equal to
One utilizes this theorem in the

calculated by the formula (111.35),

ml

the desired value of u(p) may be written

u(~) = A log q + UO(q) - C

TO establish this result, we have assumed that the cut is extended
on the segment (-v,+I.L),symmetrical with respect to the origin. In
order to reduce the general case to this particular case, it suffices
to make a conformal representation, analogous to the one already made
in section 3.1.2. Let

z’ .-a
: - az

be this conformal representation which makes the cut (-k,+k) of the
plane z‘ correspond to the cut (k,V) of the plane z. One has, in
particular
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The mean value of u on the image circle of the cut (-k,+k) of the
plane z’, in the conformal representation which transforms the plane z’
into a ring, reads, according

4Kik)
[ L’

to what we have just learned

udz’

Jk2-z’ 2)(1 - 2’2)

with L’ designating the loop surrounding the cut (-k,+k) in the
plane ‘z’.

However

We remark that

,

dz(l - a.2)

(1 - (LZ)2

—.

J /
(1- CIA)(l-UV) . E

12-a 2k

The mean value is then written

T[

—U U dz
4K~k) 2k

J(1 )- 22 (u - Z)(2 - ~)&

& being the loop surrounding the cut (A,w) in positive direction.

If we finally put

Z=ti+ticos (p
2 2
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the desired mean value on the upper edge of the cut is written

As previously, one draws the conclusion:

If ~(q) is a primitive calculated from equation (111.35),and if

the desired value of u(V) is

(111.37)u(T) = UO(P) + A log q - C

Thus the entire matter amounts to calculating the constant A.
This constant is calculated very easily if one considers the imaginary
part u’(x,y) of U(z).

In fact:

When, in the plane z, one circles once in the positive direction
of the cut (k,p), the imaginary part of U(z) increases by -2YcA. If
one circles the cut by the loop ~, one notices that u’(xjy) assumes
opposite values at the two points of the cut which have the s-e abscissa
but are situated on different edges. Thus one may write

However, according to the relations of compatibility, one may also write

(111.38)
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which permits directly the calculation of A, (starting)from the function

w = f(x)

given on the cut.

The entire analysis above assumes that f(x) becomes zero for
X=L and X=p. We now still have to reduce the general case to this
particular case. One may put

f(x) = fo(x) + co + Clx

with fo(x) becoming zero for x = k and x = p, and co and Cl

being two suitably selected constants. The problem then may be reduced
to the superposition of three problems, the first where

w(x) = fo(x)

the second where

w(x) = co

the third where

w(x) = Clx

Since the two first problems already have been dealt with, we now
only have to treat the last problem. Thus we put

f(x) = x

and seek the function U(z)

J’
P

w(z) = -; t—dt=
At-z

-*(v -L)-: zlog&



.-

and according to equation (1.26)

dU 1—.—
dz [“ ti ‘0’ E

whence by integration (determiningthe
U(1) should have a real part zero)

(1-l-X)z

1
+ (~ - Z)(L - z)

integration constant so that

127

u(z) =-:~1 - zzlog~+ 1
- pz + & - Z2)(I - U2)

-’og’ ‘-z -

(111.39)

Summing up: In order to calculate numerically the pressures in a
symmetrical problem, one has to perform the following operations:

(1) One turns to the case where w(x) becomes zero for x = L
and x = V, following the method just exposed.

(2) Calculate the constants A (formula (111.38))and q (for-
mula (111.36)).

(3) Calculate the function G(9) for a trigonometric operator.

~ (formula (111.35))and a primitive Uo(q).(4) Calculate ~

(5) Calculate

u(9) is then given by the fommla (111.37).
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ExamPle: In applying this method to the calculation of the case
of the parabolic cone where

W = &O(k2 + X2)

one has found the following distribution of the
CP

P o 15° 30° 45° 60° 75° 9°

P@ “ 6.840 2.535 1.524 1.196 1.102 1.088

one

The

In order to compare
must recall that

this with the results of the electric analogy,

x. 2x

1+X2

comparison is given by the figure 44.

3.1.3.3.2 - Study of the lifting problem.- For simplification,we
shall limit ourselves to the case where the problem admits the
plane 0X1X3 as symmetry plane.

Let us consider the function W(z); one may put it in the form

w(z) =AWO(Z) +F(z)

We(z) being the solution in W of the elementary lifting problem (for

which W. = 1), A being a real constant and F(z) a function which

remains finite in the domain where W(z) is defined. We shall put
along the cut

F(z) =

Let us put likewise

u(z) =

G(z) being the value of U(z)
W(z) =F(z).

f(x) + if’(x)

AUO(Z) +G(z)

corresponding to the case where
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We shall
on the cut by

designate the real and imaginary parts of the function G(z)
g(x) and g’(x).

If one notes that along the cut

af aw—=—
ax ax

one sees that the relations of compatibility permit one to write

ag -p k!’ af _
~z= z’-

—-.

e -x2ax fig

w(x) is the function given by hypothesis; hence

ag‘ x ~—.
ax PJ=

.
If we assume. ~ to be limited, one may visualize the development

in trigonometric series of dg’/dT in the form

dg‘—.
dV z

& sin nq (111.40)

Now G(z) may be visualized as the potential of a vortex distribu-
tion carried by the cut (in particular, the real part of U(z) is zero
on the real axis outside of the cut).

Let us consider a vortex distribution of the intensity

The value of
formula (111.40),

dg’/dV will be identical to the one written in the
if, and only if

-mn = q
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as it results from very simple calculations, already carried out in the
preceding paragraph.

Hence one then deduces the value of g(q) corresponding to dg’/d9,
defined by the formula (111.40),by means of a trigonometric operator
the numerical calculation of which results from the considerations
developed in chapter II, section 2.3.3.

One can also simply first calculate

(111.41)

by means of a Poisson integral, and then deduce from it g(~) by simple
integration, noting that

g(’T)=Ofor P=O, V=fi

Thus the problem will
the constant A. One

be completely solved as soon as we have calculated
may put, as before

()F(z2) =B log Z2 + @ Z2

~ (Z2) being a uniform function inside of the annulus
(71)72) ‘fthe

previously defined plane Z2.

O(Z2) has a

Consequently, the

Thus one deduces,

()real part zero on the circle yl of

[
mean value of ~ 0(z2)] on the circle

as in the preceding paragraph, that

1
A ‘B 10g ‘= 2K(k)

J :+

the radius 1.

(72) is zero.

(111.42)

With w known, it is then easy to calculate A + B log q. Thus the
entire matter amounts to calculating B.

If one now describes in the plane z the loop ~ surroundingthe
cut (-w,P) in positive direction, the imaginary value of F(z) must
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increase by -2fiB,according to definition.

m-

-’%=tiE
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Now

However, ag
z,

is known (formula (111.41)),and consequently34

B=

Summarizing, one may
carried out:

say that the following operations have to be

(1)

(2)

(3)

(4)

(5)

The

Calculation of g’(~).

Calculation of dg/dV, by a

Calculation of g(q), by an

Calculation of B (formula

Calculation of A (formula

result reads

u = AuO(T)

Poisson integral.

integration of d~d~ .

(111.43)).

(111.42)).

with UO(T) representing the value of u for the elementary lifting

problem when W. = 1.

Application.- Lifting parabolic cone

()w=~ok2 + X2

CP = EOP3(T)

I
340ne will easily ascertain thati b~bx becomes zero for x = O.

The integral then does not present any difficulty.
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VJ o 15° 300 450 60° 750 900

P3(~) “ 5.844 2.472 1.472 1.144 1.070 1.062
&

One will find in figure 53 the pressure distribution compared to
the one found by electric analogy.

3.2 - Case Where the Cone Is Not Inside the Mach Cone (r)

3.2.1 - Generalities

From the mathematical viewpoint, there is an essential difference
between the case where the conical obstacle is entirely inside of (r)
and the case where, in contrast, it is not entirely inside. The differ-
ence becomes very clear if one visualizes oneself in the plane Z.-
Whereas the flows studied in section 3.1 led to problems of complex
variables relative to an annular area, the problems to be studied now
will be relative to stiply connected areas. This simplifies the investi-
gation considerably. It can be foreseen that we shall no longer have to
utilize the theory of elliptic functions, and in the numerical or ana-
logical study of the problems we shall avoid the difficulties arising
from the determination of the “integration constant” for the pressure
(see sections 3.1.3.2 and 3.1.3.3).

If one places oneself in the plane Z, the functions u(z), v(z),
W(Z) will no longer be identically zero on Co . We shall show that()
the relations of compatibility then take on a form particularly simple.

These relations may be written

-pz g& . 2Z zdY= 2iZ z&/
dZ Z2+1 dz Z2-1 dz

and if one notes that on ()co

(111.44)

one can deduce from the formulas (111.44) the following relations between
the real parts u, v, w of U, V, W on Co
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Knowledge of

‘f (co) ‘ntails
two others.

dv. ldw
-P~=~—-— —

COS 9 de sin e de

one function u, v, or w on an
(except for an additive constant)

133

(111.45)

arc of the circle
knowledge of the

It is easy to extend this result to the case where U, V, W pre-
sent certain discontinuities. Let Al be a point of (%) c& the

argument 91, and let us suppose that the }eal part of W(Z) increases

by Aw if @ passes from cl-c to el + e, with c being positive

and arbitrarily small. Let (7) (see fig. 45) be a small arc of the
circle centered at Al and lying inside of (co). One has

However

and

Consequently,
have a simple pole

order to establish

it suffices in the case where dU/dZ, dV/dZ, dW/dZ
at Al, to utilize the relations of compatibility in

the formulas

(111.46)

Remark.

The formulas which we are going to set up below will be demonstrated
in the case of the figure where the conical obstacle is in its entirety
in the region xl >0. But it suffices to return to the generalities
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of section 1.2.2 to recognize that the obtained results will be valid
in more general cases. Under these conditions, one may have in the
region (A’) (see fig. 2) domains which encroach on one another. How-
ever, no difficulty arises since the relations of compatibility in the
plane (v,e), form~a (1.22), show that the functions u, v, w in
the plane (A’) are perfectly known, owing tothe boundary conditions.
One will note the identity of the formulas (111.45) and (1.22).

3.2.2 - Cone Totally Bisecting the Mach Cone (Fig. 28)

If one utilizes the plane Z, the problem amounts to determining
the functions U(Z), V(Z), W(Z) in such a manner that u, v, w are
zero on the circular arcs A~A2, A~’A2’ (see fig. 46), and that w

assumes prescribed values, with one part on the line AIAA’A2, and the

other part on the line A1’AA’A2’. In contrast to what happened in the

preceding problem, the two half spaces, separated by the plane X3 = 0)

are independent of each other. From the mathematical viewpoint, it may
for instance be a matter of determining the solution in one of the semi-
circles determined in ()co by the cut AA’. There follows that there

is no theoretical distinction between the symmetrical and the lifting
problem. Naturally, one may operate in the same manner in the plane z.
There will then be occasion to determine the solution in a semiplane,
the upper semiplane for instance; the function w = f(x) is assumed to
be known along a segment Xw, comprising in its interior the seg-
ment -1,+1 of the real axis. The function is zero on the rest of the

real axis35.

3.2.2.1 - Elementary problem.- As before, we shall start with the
study of the elementary problem, that is, the one where W=wo on the

part of a cone situated in the region ‘3 ‘0”

We shall operate, for instance, in the plane Z; the func-
tion W(Z) - wo has a real part zero on the segment AA’ and the

arcs AAl and A’Al’, and equal to -Wo on the arc AlA2. One can,

by application of Schwartz principle, extend the definition of this
function to a complete circle; its determination is then classical.
(See, for instance, ref. 13, p. 162.)

35See appendix 3.
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This permits one to write immediately

iwo log 1 + Z2 - 2Z Cos e~
w(z) .wo-— (111.4T)

‘J( 1+Z2 - 2Z Cos 02

with the logarithm being real for a real Z, and with el and e2

being the

function
relations

dv=
dZ

respective angular abscissas of the points Al and A2. The

V(Z) may be determined, for instance, with the aid of the
of compatibility

Wo Z2 + 1r1— + l_ l_ 1

n Z2 1- 1 z _ e% z _ yl z - ei92 z _ e-i@2
L d

In the integration it suffices to choose the integration constant
in such a manner that the real part of V(Z) becomes zero on the
arc AlA2. Thus one obtains

“[ i(31- z i82

v(z) .+ cot ’91log e z- cOt e2 10g - e
1 - Zeiel 1 - Ze 1if32

(111.48)

with the logarithms having an argument zero on the arc A~A2. One finds

for v the following values

v . W. cot 01, on the arc AlA2

v = W. cot 92, on the arc A’A2

besides, one could have written these values directly by virtue of the

relations36 (111.45) and (111.46).

36This shows that one could have written the formula (111.48)
directly, without writing the relations of compatibility.
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In order to write the value of v on the axis AA’, one must cal-
culate the argument of

iel
e

1 - Z$l

Now

For calculating this argument, for Z = X, one notes that the modulus

(
iel

)( )
-iel

(
iel

of e )X 2, under the assump--Z1-Ze is the one of e -

tion of 1 + X2 - 2X cos 91; on the other hand, its real part is written

~os gl(~ +X2) - 2x. If one puts, therefore

x= 2x
1+X2

11
iel - z

Arg e
cos el - x

= Arc Cos

1 - Ze
iel 1- x cos el

(111.49)

with the arc cosine having thus, besides, its principal value. One
finds likewise

[1i92Argz-e
x- cos e2

= -Arc Cos
i92

1 - Ze
1- x cos e2

hence on the axis AA’

(111.50)

[

cos el - x x- cos e2
v. - !!2 cot 91 MC cos ~ + COt e2 h-c cos ~

Yt - x cos el
1

x cos e2
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The calculation of U(Z) is perfectly analogous. One finds

137

[

ie2 iel
u(z) =’- ~ 1 1log z-e -— loge -z

13fisin e2 ~ - ~ie2 sin el
l-Ze 1iel

(111.51)

with the logarithms having the same value as in the formula (111.&8).
One finds as the value of the pressure coefficient W. = u( )

C@=& 1 on the arc A’A2
p sin e2’

_2a 1
CP

on the arc AA~ (111.52)
~ sin 91’

CP =
&

[

1 Cos Eq - x 1 x- cos e2
hc Cos + — Arc Cos

pfisin el 1- 1
)

x cos el sin .92 1- x Cos 92

on the axis AA’

In the case where ox~x3 is a symmetry plane

e2=fi-el

and the last formula (111.52)may also be

[

cos el - x +
Cp = 2U Arc Cos

ptisin el 1- x cos el

.
h-a

13fisin el

‘c ‘in*

written

x +- cos el
Arc Cos

1
l+xcOsel

(111.53)



138 NACA TM 1354

In order to utilize these formulas, it is sufficient to connect
the angles 191 and G2 with the geometrical form of the given delta

wing (fig. 47). One has, according to definition

Cos el = l/13 t~q Cos 62 = 1/9 tanu2

Let us recall also that

One will find in figure 48 a few applications of the for-
mula (111.53).

3.2.2.2 - Resultant of the normal forces on the upper region

(X3 >o).- One can give, as in section 3.1.9, a simple formula permit-

ting the calculation of the resultant of the normal forces. If we des-
ignate by C + the dimensionless coefficient characterizing this

~ + is defined by the equalityresultant, z

Likewise we define the dimensionless number Cz-, characterizingthe

forces normal to the lower region (X3 < O), by the equality

J Cp dx

Cz- = A

J’
P

‘ dx
k

with the integrals
of the cut (A,p),

taken in the plane z, the first on
the second on the lower edge. This

the upper edge
definition entails
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that the total Cz of a cone is written

Cz = Cz: + cz-“.

Now

139

J’
IJ
CTLx= 1 - 1

k Cos el Cos 02

However, the integral of U(Z) 1 - ‘2 along the closed con-
(1 + Z2)2

tour BA2A’A~B (fig. 46) is zero. On the other hand, with U(Z)

having a real part zero on the arc A2A1, one has

R
-[f

u(z) 1 - ‘2
] [[

dZ = -R

(1+z2)2 - AlA2

u(z) 1 - .2

1
[1

.Z = R ifiRi
A2A ‘AA~ (1 +%)2 –

Ri denoting the residue of the function to be integrated, at the

point Z=i

Ri=-~

Thus one obtains the general

2incz+=-—
P

dU 1 dW.——
ti(z=i) 2B ‘(Z=i)

formula

Cos el Cos ’92 .~
—

Cos el - COS e2 dz(z=i)
(111.54)
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In the case of the elementary problem, studied in section 3.2.2.1,
one has

~ ia COS ez - COS 61
=—

‘(Z=i) “ cos el cos 62

whence

(111.55)

if one puts a= -i.,following the notation customary in the wing theory.

Thus we shall find anew a remarkable result: the value of the
coefficient Cz+ is independent of the angles e~ and G2.

3.2.2.3 - Study of the general case by means of the method of
electric analogies.- The method set forth above (section 3.1.3.3) may
be applied in superposition. The electrodes must be disposed on the
arcs AAl, A’A2, and on the seaent AA’. These electrodes must be

brought to prescribed potentials; the conductive arc A~A2 is brought

to the potential O. Finally, one will detach a small electrode at the
point B with the purpose of measuring the resultant of the normal
forces; this resultant, given by the formula (111.54) is, in fact> pro-
portional to the intensity entering at B.

The value of u on the arcs AAl and A’A2 is immediately known

by simple integration.

In fact, if for instance W1 designates the value of w given for

(c positive and arbitrarily small), one has3T, according to for-
mula (111.46)

37Physically,the fact that the pressure on the bounding genera-
trices of the conical obstacle depends only on the inclination of the
tangent plane along these generatrices is obvious. It expresses the
independence (see section 1.2.4) of these bounding generatrices with
respect to the other generatrices of the conical obstacle.
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and the formulas (111.45)
arc AAl. Thus it is not

permit the calculation of u on the entire
necessary to measure the intensities leaving

each of the electrodes except over the length of the segment AA’ . As
before, this intensity, proportional to bw/~Y, furnishes immediately
the value of &/~X along the axis OX, owing to the formula

~au. 2x &
ax ~-x2aY

Since one knows the value of u at the points A and A’, one
uses the superabundant data for calculation of the value of u on the
axis AA’. Thus it is unnecessary to obtain the distribution of the
potential, inside of the tank, as in the case described in sec-
tion 3.1.3.2.

3.2.2.4 - Study of the general problem by purely numerical methods.-
In order to simplify the exposition, we shall be content to examine the
case

This
even

and

where the given cone admits the plane 0X1X3 as symmetry plane.

amounts to stating that in the plane z the function w(x) is
in x on the cut (-PYP) representing the given cone.

We assume wl to be the value of w at the points x = 1

x = -1, and put

f(x) = w(x) - wl

If l<x<~, onewillput x=~ p=__&_- and F(e) = f(x).
cos e’ Cos el

One notes that F(0) = O. After this statement, it is ~irst of all evi-
dent, according to the foregoing, that one can immediately calculate the
pressure outside of the cone (r).

In order to calculate the pressure
the flow as the superposition,

1.- of an elementary flow
(
w = -wl, on

2.- of an infinite number of elementary
and symmetrical with respect to ox~x3.

inside of (1?),one will consider

the entire cut))

flows bisecting the cone (r)
These flows give at the

. . . —. ... ..—. - . ...
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point x(x < 1) a pressure coefficient equal to

f

1
Cp=; 1 m Arc sin—— sin 6’

sin (3de
o - ‘e

3 of a syrmnetricflow inside the Mach cone, defined by w = f(x), on
t;; cut (-1,+1). One may apply the method described in section 3.1.3.3
for the calculation of this flow. We shall simply remark that it is not
necessary to determine the integration constant since one knows that
u=O,for x=il.

3.2.3 - Cone

of

Partially Inside and Partially Outside

the Mach Cone (!7) (Fig. 30)

3.2.3.1 - Symnetrical elementary problem.- The circle bounded by

(co) must be notched by a cut CA (See fig. 49), with the real part

of I!(Z) assuming the constant value W. = a. on the upper edge of the

cut, and the value -W() on the lower edge. On the circle
()Co , w is

zero, except on the arc A./q where w = Wo, and on the arc AAl’ where

w. -Wo. One will designate the point C on the circle Co by

Z = a, and the argument of Al on the circle ()co by 91.

The function W(Z) can be written without difficulty

‘o (Z-a)(l -aZ)
W(Z) = W. + i ~log

( )(
iel z

z )
-iel

-e -e

with the argument

(Z-a)(l -aZ)

(z )(i@l -i91
-e z -e )

being chosen equal to zero at the point A on the
cut. Since W(Z) is defined with exception of an
only, one may also write

upper edge of the
imaginary constant
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W(-J 2zto -
W(Z) = wo + i -&g . .

(1 + Zq

-.. ,

putting
()

1to=~a+;.

We shall now seek U(Z)

-P dU _ 2iZ 2W0 ~
U___——

dZ Z2 _ ~ dZ Yrz2-~

l+z~ - 2z cos el
(111.56)

1 1- 1—-
Z -a l:aZ - i@l z -iel

z -e -e
—

whence

r

1
iQ1 _ ~

u(z) = a “ log e a-— log s-z

1

(111.57)
~fi2s:ne1 ~_zeiel l-a2 l-az

Consequently, on the arc AA~

~p=a 1
~ sin 91

which is a result one could foresee immediately.

One obtains easily the value of CP
to write the formula (111.49)

[

cp–2a 1 cos el - x
Arc Cos

IKpsin el 1 - x Cos el

along the axis OX; it suffices

+ 2a log M
1- ~2 l-aX

(111.58)

Let us recall that x = 2X .
1+X2
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Particular case: Let us assume that el = :, a =’O, under the
G

following conditions

On the arc Ml) 1
On the segment AA’, Cp=a

b 1c Cos( - x)
pll

1

(2a 7(=—— + ihc sin x
J3112 )J

Let us recall that in all these formulas x = 13~, with

(111.59)

(xl~r~o)

being the semipolar coordinates of a point of the wing A in the system
of axes ( )oXl~X2~X3 J and that cos el = l/~ tan ml.

3.2.3.2 - Elementary lifting problem, in the case where a = ().-

The transformation s = TZ transforms the circle ()co into a semi-

circle in the plane of the complex variable s. In this plane, Al

and Al’ have as homologies Ml and Ml’ (see fig. 50). The func-

tion W(s) has a real part zero on the arc MIMl’

on the arcs AMl, BM1’, and on the segment AB.

We shall determine directly the function u(z)
tion U(s). In fact, U(s) has its real part zero

knows, according to the relations of compatibility,
ceding paragraphs

and equal to W.

or rather the func-
on MIMl’ and one

that as in the pre-
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Moreover, the imaginary part of U(s) is constant on the real
axis and may, consequently,be put equal to O. Thus one may analyti-
cally continue the function U(s) across the real axis. U(s) is then
determined as solution of a Dirichlet problem inside of the circle of
‘radiusunity. One has

iwo - ei(31/2
u(s) = log s )(s + e-iel/2)

pfisin Ell
(
s + eiel/2

)(
_ e-iel/2

s )

with the logarithm having the value of ifi for s = 1.

It is then easy to calculate u on the real axis, that is, on the
segment OA of the”original plane Z. Let us put

x. 2Z = 2s2

1+Z2 1+s4

The quantity under the logarithmic sign is written

S2-1 ‘1- 2is sin ~

S2
el

-l+2issin~

Its argument is equal to that of

*

Now, the
tively, equal

(
S2

and

( el)
2

S2-1 - 2is sin ~
\

real part and the modulus
to

-1)2 - 4s2sin2 ~ = s4 +

of this expression are, respec-

1- (2s2 2 - cos el)

(s2-42+4s2sin2%-=‘4+1- 2s2c0s‘1
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‘o 2X(1 -
u=-

Cos 91)

M sin & I l-xcose, lL 1- ‘-I

2a

[

2X(1 -

1

Cos el)

CP =
Arc Cos 1 -

@ sin f31 1 - x cos el
(111.60)

Particular case.- Let us suppose that ,gl=~

Cp = ~Arc Cos(l - 2x)

3.2.3.3 - Elementary lifting problem in the case where a O.-
The elegant demonstration which has just been made for a = O and the
principle of which is to be found in the original memorandum by Busemann,
conceals one difficulty; this has caused M. Beschkine (ref. 11) to give
a formula in the case where a / O which, at least in certain cases,
leads to difficulties. In working directly with the function U, one
risks forgetting the supplementary conditions which, because of the
relations of compatibility,must be applied if one does not want singu-
larities for the functions U, V, W at points other than the ends of
the cut.

In fact, if U(Z) is regular inside of the circle (%), v(z)

and W(Z) will have a logarithmic singularity at the point Z = O. We
shall study the case where a # 0, by studying directly the function W
and limiting ourselves to not having singularities outside of the boundary
generatrices of the cone. Besides, we shall again take up this important
problem in section 3.3.

Thus it is a matter of studying the case where w = W. on the

arc AAl and on the upper and lower edges of the cut CA (see fig. 49)

and on the arc AAl’; the transformation

a .Z-a
l-aZ

which maintains the circle of radius unity, leads us to the case where
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the cut is arranged following a radius. Finally the transformation

(J=sz

leads, in the plane s, to search for a function W(s) the real part
of which assumes the value W() on the arcs BMl, B’Ml’ of the semi-

circle of radius unity of the positive plane and on the segment BB’,
and becomes zero on the arc MIMl’ by application of Schwartz’ prin-

ciple; one may continue the function w(s) - Wo to the lower semicircle

of the plane s. This function is defined by the values of its real
part on the circumference of radius 1 of the plsne s. However, since
dW/dZ must become zero at the point Z = -1, dW/ds must become zero
for s = fi.

In order to satisfy this condition, one decides to admit, for
W(s), singular points at the points Ml, Ml’, M2, M2’, and at the

point s = O. According to the investigation of section 3.1.1.2, this
point may be a pole of the order one, with the residue being necessarily
purely imaginary.

If ik is the residue of this pole, one may therefore write

1+s2W(s) = W. + G(s) + ik s

with G(s) being a homomorphic
radius 1.

However, on

One deduces from
is of the form

w(s) =

the circle Is

function inside of the circle of

1, ikl+s2. is purely imaginary.
s

it immediately the function G(s); consequently, W(s)

1+S”+2SCOS*

~ being the argxnent of the point Ml.
2
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One calculates U(s), owing to the relations of compatibility

1354

(
91 V1

Zwo (s2 + a)(l + s2a) 2ei ~
-i —

au +2e2—= -
ds pfi(l- az) s4-~

)

+
2 iQ1 ~z -iT1

-e -e

2k (s2 + a)(l + sza)

~ (1 + az)sz(sz + 1)

because

2Z =z~ a +a)(l + ua)
z2-~

(02 - 1)(1 - a2)

One verifies immediately that the points s
(and that, consequently, the points Z =*1 are
if

= *i are not poles
not singular points),

k=- ‘0
91

31Cos —
2

Hence, for U(s)

(2W() a 1
u(s) =

- Sz)
+

‘1 (1 -az)s
pflCos ~

(iwo 1 + 2a cos 91 + a2) ,..(s - 2?)(S + LP+)
f3Yc

(12-a )sin 91

(s - e-i:)(s +ei ‘)

It is easy to

the point Al on

(111.61)

relate the angle V1 to the given angle Gl, fixing

()co in the plane Z
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i$l
e =

The calculation of

culation at the end

(cos V1 1 + a2) ( )+2a+il-a2sin Vl

l+2acos91+a2

CP is then shple; it suffices to resume the cal-

of the preceding paragraph

.= 2(l+a2)-2a(l+Z2)= ‘-XO

s4+l- (1 +a2)(l + Z2)4aZ

if one puts, on the real axis

x= 2Z ~= 2a
1+Z2 l+a2

Under these conditions

Cos el - X0
Cos ~1 =

1 - X()Cos 01

1- %

(111.62)

and, consequently,

Cp = 2a on the arc AAl
fipsin 191’

cp=- 4aa 1 -x +
X - a)(l - aX)

fip(l- a)cos

2a

[

Arc Cos 1 -
2(X-%)(1 -COS 91)

1
(111.63)

fipsin 191 1- Xxo - (x - Xo)cos Q1

.
on the upper edge of the cut AC.
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If a= ~ = O, one arrives againat the formula (111.60);the

formula given by L. Beschkine (ref. 11) does not contain the first term.

3.2.3.4 - Calculation of Cz in the lifting case.- C= in the

plane z is always defined by the equality

J Cp dx
~

Cz =

I

P
dx

k

with the first integral being taken in the positive sense on the loop
surrounding the cut.

However, with the adopted notations

A=xo ~=1
cos el

J’
v

dx= 1
1. cos el

-%=l-xocosel
cos el

On the other hand

But

! u(z) 1 - ‘2

1

d’ =
AIACAA1‘ (1 + ‘2)2f

@zj 1 - ‘2 d’=~
AIACAA~‘ (1 + ‘2)2

R
-[l AIA‘Al ‘ u(’);,$)2d]=~i(Ri+R-ifl
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Ri and R.i being the residues

the points Z=iand Z=-i;

—..

of the function to

finally

r
c~ =

2ifiCos el

()
~

()
-&l

p(l - X.0Cos (31) dz (z=i) dz (Z=-i)l

151

be integrated at

1

L A

In the purely lifting case

4ifiCos el dw
Cz =

()P(1 - ~ COS‘1) n (z=i)

We apply this formula to the elementary case

dW=~dsdo_dWl l-a2—— _
z ds do dZ ‘s 2& (1 - aZ)2

One will put for simplificationfor Z = i

(a.t,anki-
2

One then finds that

X(-J= -Cos p

()QIJ
iw sin2p cos ~
o.—

W (z=i) ‘ Cosql
( )

V1
- Cos p Cos y

Hence ()Wo =a

(111.64)

—
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If one utilizes the equality (111.62) in defining 91 and if one

puts a = -i, with i designating the incidence, one finds the very
simple formula

(111.65)

3.2.3.5 - General case.- The investigation of the general case may
be made either by electric analog or by calculation. The methods to
be employed result from what has been seen in sections 3.1.3.2, 3.1.3.3,
3.2.2.3, and 3.2.2.4.

Let us only indicate that, in the solution of the lifting problem
by electric analogy, one must arrange a singularity at the point C
like the one defined in section 3.1.3.2.3. The adjustment of the poten-
tial to which the conductive part of this singularity must be brought is
obtained by the condition that no intensity enters at the point A’ .
To verify this condition, one will use the method already indicated in
the section noted.

Naturally, the total Cz will be very easily determined by mea-

surement of the intensity entering at the point B and application of
the formula (111.64).

3.2.4 - Cone Entirely Outside of the Cone (r) (Fig. 29)

3.2.4.1 - Elementary symmetrical problem.- The problem consists in
determining U(Z), V(Z), W(Z) by means of the following conditions:
the real part of W(Z) assumes on the arc A1A2 (see fig. 51) of the

circle ()co the constant value w~ = u, and on the arc A1’A2’ the

value -Wo. On the other portions of (Co) this real part is zero.

Thus one may write immediately the value of the real part of u(z) on
the circle (Co) (formulas (111.45), (111.46)). It is an even function

of the argument 0. One has



NACA TM 1354 153

U=o, on the arc A’A2

w(-) 1
u.-. —

p sin 192’
on the arc A2A1

(Wo 1u=-— 1

)
on the arc AIA

~ sin 0~ - sin 19~‘

whence for the function U(Z), the formula

[

i(32- ~ iel
u(z) =% 1 log e 1 log e 1‘i~l(111.66)

~fi sin e2 ~ - Ze
ie2 sin el

1 -Ze

the logarithms assuming the value ifi at the point Z=l.

The complete calculation of V(Z) and W(Z), likewise, does not
offer any difficulties.

One deduces from this formula the calculation of the pressures on
the obstacle and outside of the obstacle.

Cp .

Cp =

In the plane X1OX2 the pressure coefficient has the value

2a 1 on the obstacle
~ sin e2’

(

2U 1 1

)

in the region comprised between the obstacle
~sin e2 - sin el ‘ and the Mach cone of the point O

Let us recall that if ml and 02 designate the angles formed by

the bounding generatrices of the obstacle with Oxl, one has

to definition (see fig. 52):

cos el = l/p tanq cos e2 = l/p tan 02

according
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Inside of the Mach cone, finally, at the point xl, X2, one has

[

Cos 62 - x 1 Cos el - x
cP=&si~62Mcc0sl -

Arc Cos
x Cos ez sin el 1

1
- x Cos el

X2
the arc cosines having their principle values.if x = p=

3.2.4.2 - General symmetrical problem.- The general symmetrical
problem does not present any difficulty, since one may operate by means
of superposition; let w = u(e) be the given value of velocity compo-
nent following Ox~ over the length of the obstacle (el< e< e2).

The formulas giving the CP
may be written immediately

J
e2+o da

cp=-~ at the point of the obstacle of
Be sin e’ parsmeter @

I

J’
(32+0 da

cp=-~ —, behind the obstacle, outside of the
p ~l_o sin @

1

(111.67)
cone (r)

J’
e2+o

2-—
CP =

Arccos cose-t~
Pfi 61-0 1

inside of the
- t cos e sin e’ Mach cone

I

The integrals of the preceding formulas must be taken according to
the signification of Stieljes; this is a fundamental condition for the
case where u(e) presents discontinuities. In particular, one will
have to take account of two discontinuities: the discontinuity +CL(el)

for 6 = 61, and the discontinuity -a(62) for e s e2. Not to forget

these discontinuities was the reason that we wrote certain limits of the
integrals el - 0, e2 + o.

3.2.4.3 - Elementary lifting problem.- The solution obtained for
the symmetrical problem (formula (111.66)) is valid, since dW/dZ
necessarily becomes zero at the points Z = *1; also, dU/dZ becomes
zero at the point Z = O; thus the relations of compatibility do not
entail any singularity other than the points Al and A2. We shall see

———,,, ,! -,---- ,, ,.,, ,.,,., --- m .,, , ,-l.-—!.- .,----
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in case of the lifting problem a few
condition is again to be satisfied.

Let us first assume that the points

155

precautions must be taken if

Al~ A2 and Al’, A2’ are

simple poles for dU dV ad ~.
=’ z

One may then write the values of
dZ

u, v, w on the circle ()co utilizing the relations (111.45)

and (111.46) as well as the boundary conditions. These latter let us
know that w assumes the value W() on the arcs AlA2, A1’A2’

(fig. 51). On the other hand, the component u necessarily continues
outside of the cone (since u represents the pressure except for one
constant) and, being odd in X3, must become zero in the plane 0X1X2

outside of the given delta wing. Consequently, u = O on the cir-

cle (CO)J ‘Utside ‘f ‘he arcs ‘lA2~ ‘~A2’ “ ‘ence ‘ne ‘educes> as
before, that on A1A2

v = a cot 02 U=-Q 1
p sin @2

but on the arc AA~

sin 92 - sin 01
w.a V=u

sin @2

Cos EJ2- Cos el

sin (32

We note therefore that w assumes on the arc AAl‘ the same values

as on the arc AAl, whereas v assumes opposite values. Hence one

deduces that the region of the plane 0x1x2, comprised between the
trailing edge Al and the Mach cone (see fig. 52),,is thus a region of

discontinuity for the velocity.

(
One sees therefore that the hypothesis set up before simple poles

)
for ~, ~, ~

dZ dZ
is incompatiblewith the fact that U, V, W do

not admit singularities other than the points Al) A2, Al’, A2’.
One may realize this, besides, in smother manner; in order to satisfy
in the simplest possible way the boundary conditions imposed on u(z),
it suffices to write U(Z) in the form
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1 . 2Z cos el + z2
u~(z) = - “ log

~fi&e2 ~- 2Z Cos 92 + Z2

since this function U1(Z) well fulfills the boundary

required for the function U(Z) on the circ@erence

conditions

()co . However,

dUl 2ia

[

z - cos el z - cos e2
—.-
dZ ~fisin e2 1 -2zcos01+z2 l-2zc0se2+z2

and for Z = O

()dUl 2ia
(
cos el -

= ~fisin e2
cos e2)

z Z=o

If, therefore, the functions U(Z), V(Z), W(Z) are not to admit
singularities inside of ()Co , the solution U1(Z) cannot be retained

just as it is because the corresponding functions v].(z) and WI(Z)

would have a critical logarithmic point at the origin38.

Thus we are led to modify the solution U1(Z) by introducing a

singularity at one of the points Al or A2 (and, by symmetry, at Al’

or A2’). Physically, by virtue of the rule of forbidden signals, this

singularity must be placed at the pair of points Al, Al’, because the

bounding generatrix ~ (fig. 52) which takes the place of the leading

edge (having as image the pair of points A2, A2’ in the plane Z) is

independent (see section 1.2.4) of the trailing edge (pair of
points Al, Al’, in the plane Z). One then sees thak, by putting

1- 2Z cos el + Z2
u(z) = - ‘a log 2ia (Cos 91 - cos e2)z

fc~sin e2 1- 2Z Cos e2 + Z2 fi~sin e2 1 - 2Z Cos 91 + Z2

(111.68)

3~. Beschki,ne(ref. II) took the function U1(Z) as the value of

U(Z); see further on, in section 3.3.2, the discussion of this question.
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one has, for U(Z), a function satisfying the boundary conditions on
(co)) homomorphic inside of (Co), the derivative of which becomes zero
at the point Z = O and consequently leads to functions W(Z) and V(Z)
which do not present singularities inside of (%) . Besides, this solu-

tion is unique if
larities.

One may then
finds for W(Z)

one takes

calculate

w(z) = -

g
lx

and

account of the principle of minimum singu-

the functions V(Z) and W(Z). Thus one

ia (1- cos el cos e2) log eiel - z +

fisin e2 sin el
1 -Ze

iel

cos el - cos ea
G

Z2-1
(111.69)

s;n e2 1+Z2 - 2Z cos el

)(if32 -if32
v(z) =-~c0te210gz- e ‘-e )

( )( )

+
n

z
iel z -iel

-e -e

u cos el 2(COSel - cos e2)
II sin e2 1 + Z2 - ZIZcos el

(111.70)

Thus one finds that on the wing
(arc AlA2) the component v has

the value

v=acote2

In the region of the plane OX1X2 outside of the wing, the compo-

nent v is always zero; whereas w assumes a constant value in the part
comprised between the trailing edge and the cone (r):

( 1 )-c0se1c05e2 =-al- cOs(el - e2)
w.ul-

sin e2 sin el sin el sin e2
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Finally, in the part of the plane

O, and w is given by

ox~x~ inside

the formula

Arc Cos(— -
Cos 192- x

1 - x Cos ez)

1- Cos el Cos 192)~c Cos( Cos el -

NACA TM 1354

of (r) (seg-

sin 191sin e2 {1 - x Cos el)

Cos EJl- Cos ’92_J&2- (111.71)
sin e2 1 - x Cos el

3.2.4.4 - General lifting problem.- One sees immediatelythat, if
one wants to uniquely calculate the pressure on the obstacle, one may
utilize the ssme formula as for the ~enersl ssmnnetricalmoblem (for-
mula (111.67)). Besides, the study ~f the vfiues
in the general case will also be very simple with
iion. One will easily verify that, if w = u(e)
value of the normal component along the obstacle

has, for instance

U(Z),- V(Z), and W(Z)
the aid of superposi-
is the prescribed

(el<e

J
82+0 log 1 + Z2 - 2Z COS 61 da(e) +

u(z) = ~
@ el 1+Z2 - 2Z cos e ‘in e

J’‘2+0 cos el - cos e2iZ

pfi(l- 2Z cos el + z2) el sin e

Analogous formulas could be written for V(Z) and W(Z).

< e2),one

da(e)

Thus the electric analogy is less interesting in this case, since
there is a way of solving the problem explicitly. We shall simply note
that the singularity to be placed at the tank at the image point of the
trailing edge is a doublet.
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33. - Supplementary Remarks on the Infinitely

Flattened Conical Flows

3.3.1 - Continuity of the Results

At the end of this investigation, it will not be unnecessary to
state briefly the continuity of the obtained results.

If one takes for instance an elementary flow bisecting the Mach
cone for which one makes el tend toward O, e2 toward JC,one finds,

passing to the corresponding limit in the formula (111.52) as limiting
value of the pressure coefficient

I

cos el - x2a lti91+0 silCP=E Arc Cos +
L

KE+JR!.!.=*JT5(111.72)

el 1- x cos el

x-
JkL-c Cos

cos e2

1

.
1- x Cos ez

.

If one now makes, in an elementary flow, symmetrical or lifting
(see sections 2.1.2.2 and 3.1.2.3), b and c, respectively, tend
toward -1 and 1, one again arrives at the formula (111.72). Besides,
the formula (111.72) has already been written, at the end of sec-
tion 3.1.1.7. One finds, finally, the same result by transferring like-
wise results from section 3.2.3. If one makes,
formula (111.58), el tend toward zero and a

for instance, in the
toward -1, one obtains

Cp=:

[

1 cos el - x
limel-+e Arc +

sin el 1 - x cos el

—1 r-
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Likewise, starting from equation (111.63) and making a tend
toward -1, (61 toward zero 91 tend toward zero)

.4+ X1-X+ ~ limel+()J CP 2pYcl+x pll
X0+-1

2(x - ~) (1 - Cos 91)

1- % - (x - ‘O)cos ‘1)

1 (—Arccosl -
sin 01

2a=—
l%t

l-x+
1+X
L

Likewise, one may verify the continuity of the results under the
hypothesis where a single one of the generatrices of the conical obstacle
is situated on the Mach cone. One thus obtains a limiting case between
the flows studied in section 3.1.2 and those studied in section 3.2.3.
If one supposes, for instance, that one of the bounding generatrices
has as image the point Z = 1, the second the point Z = a, -l<a<l,
one finds, whatever the manner of
the symmetrical problem

[r
Cp=al+x+

fipl-x
L-

and for the lifting problem

making the passage to the limit, for

2a

[-1]
Zlog:-a

1 -a aX

In the same manner one can verify the continuity between the flows
studied in sections 3.2.3 and 3.2.4.
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3.3.2 - Discussion on the Possible Singularities
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of Lifting Problems

In this entire chapter, we have limited”ourselves to giving the
solutions which satisfy the condition, stated frequently: To admit as
singularities in the plane Z only the bounding generatrices of the A,
and to choose from among all possible solutions the solution which sat-
isfies the principle of minimum singularities. This is a hypothesis
which is justified by its simplicity and which we have set up here with-
out using the experimental results apt to guide our choice for placing

the singularities39.

A first theoretical possibility would consist in admitting singu-
larities possible on the generatrices of the Mach cone, having as image
the points Z = +1 in the plane Z. This seems to us not easily admis-
sible from the physical point of view. Besides, to our knowledge, the
various authors who have treated problems of infinitely flattened conical
flows have always eliminated this possibility (see in particular refs.
10 and 11). In fact, it is hard to understand how the pressure could
become infinite in the neighborhood of these generatrices.

In contrast, one has a means of obtaining solutions different from
those obtained in the course of this investigation, in tolerating, as
possible singular point, the point Z = O.

We shall first make the following general remark: Let us take the
case of a cone where one of the bounding generatrices has as image the
point Z = O in the plane Z; in this case the pressure remains finite
in the neighborhood of the correspondingbounding generatrix. This
results from the formulas (111.23) and (111.24) for the case of a cone
entirely inside of (17) (section 3.1.2), and from formulas (111.58)
and (111.60) for the case of a cone partially outside, partially inside
of (r) (section 3.2.3). We shall show that, utilizing conformal repre-
sentations and maintaining the circle ()Co , it will be possible, even

in the case where Oxl is not a bounding generatrix, to define a solu-

tion of the lifting problem in such a manner that the pressure remains
finite along a bounding generatrix inside of (r), under the condition
of admitting the point Z = O as singular point.

39The theoretical study of flows (movements) in incompressible
fluid has been rendered possible and effective only owing to the famous
hypothesis of Joukowsky which indicates the choice to be made among the
singularitieswhich are possible for the flow. The study of the prob-
lems treated here shows uncertainty in the state of our actual knowledge
concerning the conditions which the theoretical solution must satisfy
in order to represent best the real phenomena.
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We return to the investigationof section
One may in fact come back to the case where a
tions utilized before

then
ssme
Thus
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3.2.3.3 where a{O:
= O, by the transforma-

Zcr=~ S2=G
l-aZ

The function U(s) the determination of which was the problem is
defined inside of the semicircle, and it satisfies exactly the
conditions as the function U(s) studied in section 3.2.3.2.
one will have

V1 being defined starting”from 61

leads us to a value of the ~ressure

Cp = 2U rArc Cos 1 -
pm sin @l

L

by the equality (111.62). This

coefficient

2(X - XJ(l - Cos Q

1-
1~ - (x - %)cos ‘1

a value already given by Beschkine which is
mula (111.63) by suppression of the term in

deduced from the for-
logarithm. This pressure

coefficient remains finite along the bounding generatrix inside of (r):
x,. w“

However, if one calculates the functions W(Z) and V(Z), corre-
sponding to the function U defined by equation (111.73), one finds
the following results
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1+s2
Y1

- 2s Cos ~
W(s) = WO - i ‘o~ log +

v~
-= l+s2+2scos~

r

‘~ ~os 5 J- log (s- ‘F)(’+$)
Yt

2 J= (s+ +)(’ -6)+“og
L
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l.-
(11~.74)

These formulas call for the following
assume a>O:

remarks (see fig. 54). We

1. On the region of the obstacle comprised between OD and O ~

(1
~1

)
Args <y one has

a result which is quite

W.w o

v = tw cot 91

conformal to the formulas (111.44) and (111.46).

2. On the region of the obstacle comprised between OD and O Al,

s is real L-1 < s < 0, for the surface X3 < ~; one sees that W=wo

91
Cos —

on every surface, whereas v assumes the opposite values

‘Wo *“
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3. On the region of the plane ‘X1X2
Oxl (s is purely imaginary and varies on

NACA

comprised between O

the segment M), v

,0su
tains constant opposite values, equal to a tw , whereas

F2
increases infinitely in absolute value.

4. On the region of the plane comprised between Oxl and

m 1354

~ and

main-

W

OD‘

(SZ which is purely imaginary, describes the segment ti), v is zero;
w, infinite on Oxl, becomes zero on OD’.

Behind the generatrix O Al which one may consider as the trailing

edge of the wing A studied, this solution furnishes therefore a zone
of discontinuity of velocity (the discontinuity being in the direction
of OX2) which occupies the region O Al, Oxl. Moreover, the axis Oxl

is a singular straight line for the flow. Thus one encounters a scheme
which seems at first rather tempting and reminds one of the study of
the wing in subsonic flow; behind the wing there appears a zone of dis-
continuity of velocity produced by vortices following the direction of
Oxl, and the singularity encountered along the axis Oxl reminds one

of the “marginal vortex” of the wing theory. As in the case of subsonic
flows, this flow scheme appears linked to the condition of having a
finite pressure along the trailing edge.

The formulas (111.74) likewise show us that the flow found does
not satisfy the boundary conditions if a is negative, that is, if the
obstacle is not situated on the same side of the plane ox~x3. In fact,

in this case w would admit on the obstacle a discontinuity in the
neighborhood of the axis Oxl; but this is incompatiblewith the boundary—
data40.

If one wants to apply a stiilar method in the case of a symmetrical
flow, one likewise notices immediatelythat the result is incompatible
with the given boundary conditions since one obtains a discontinuity
for w.

Let us now visualize the case of a flow around a cone entirely
inside of the Mach cone, with the bounding generatrices on the same

40’Thissolution which has been suggested by Beschkine must, there-
fore, certainly be rejected in the case where a is negative; the fig-
ure 6 given by Beschkine (ref. 11) seems to show that this author has
not seen this fundamental restriction. In this case one must certainly
adopt the solution set forth in section 3.2.3.3.
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side as Oxl (fig. 55) and the

edge OA1. The function U(Z)

165

remaining finite on the trailing

then has the form

U(Z) =~C(b,c)

m

(111.75)

with C(b,c) being a function of b and of c.

One then sees that in calculating V(Z) and W(Z) one will.find
the same particularities as previously: the point Z = O will be a
singular point. In the region comprised between ox~ and= OAl one

states a discontinuity of the component v whereas the velocity w
becomes itiinite along Oxl.

The following problem arises: Should one adopt in the case where
the two bounding generatrices O Al and O ~ are on the ssme side

as Oxl the solutions exposed in the course of this chapter, which we

shall call solutions of type I (singularitieson OA1 and 0~), or

the solutions we just indicated,

(

which we shall call solutions of type II
singularities along O% and Oxl)?

Let us note first of all that, for reasons of continuity, it is
absolutely necessary to adopt completely one or the other viewpoint;
one cannot admit a solution of the type I for the flows entirely inside
the Mach cone, and a solution of the type II for the flows partly
inside) partly outside.

Under this presupposition, the solutions of the type II are, at a
first glance, rather tempting; perhaps certain authors were thinking of
these solutions when they exposed the condition of the subsonic trailing
edge which could be stated in the following manner:

Since the tangent to the trailing edge forms with the flow an angle
which is smaller than the Mach angle of the flow, one must write on the
corresponding trailing edge the condition of Joukowsky in order to be
sure that the velocity remains finite (see for instance ref. 4).

Now the solutions correspondingto the formulas (111.73) and (111.75)
seem to satisfy these conditions. And as we remarked before, these
flows show, behind the trailing edge, actually a character which reminds
one of subsonic flows.
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We do not want to
to make three remarks.
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definitely reject these flows; however, we have

1. As we have stated that the solutions with finite pressure along
the trailing edge are not possible for the symmetrical problems, the
pressure cannot remain finite in the case of a flow of the type II
around a cone having thickness.

2. It would be dangerous to link the solutions of the type II to
the “subsonic trailing edge” since, if the wing is entirely outside of
the cone (r), there exists still another solution which yields a finite
pressure on O Al and gives rise to a surface of discontinuity between

ox~ and OA1: It is the solution U1(Z) visualized at the beginning

of section 3.2.4.3. One has, in fact, under this hypothesis

VI(Z) = +U (Cos 02 - )Cos J31log( - z) +
YrSln ez

. &2p ‘1 -(1 +‘2 - 2ZCos‘%)-

Cos Q2 log(l + Z2 - 2Z Cos 02il
-1

which gives in the region comprised between Oxl and O Al equal

values of v

*U (cos e2 )- cos el
sin e2

If one adopts for such a cone the lifting solution of the type II,
one finds that the velocity remains finite at the trailing edge, even
under the hypothesis of a cone of nonzero thickness.

3. Adopting, still by virtue of the principle of continuity, the
type II for the lifting solutions in the case where the bounding genera-
trices are on the same side as ox~ would lead us to a restriction of

the range of the study of the flows with infinitely small cone angle
made in chapter II; for this problem, such as it has been posed, would
no longer be valid in the case where the contour (C) in the plane Z
no longer contains O in its interior. In contrast, we already have
had occasion to state that the results of chapter III are in complete
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agreement with those of chapter II (see section 2.2.8); this statement
is valid for the case of any figure whatsoever.

We may conclude that, at-cordingto the actual state of our knowl-
->. ‘edge, it does not seem hperative to adopt the viewpoint of the solu-

tions of type II. In our opinion, only an experimental study can indi-
cate where the theorist must place the singularities;the viewpoint
adopted in this chapter seems to us to be the most natural one. It
becomes required in the case where ox~ is comprised in the angle OA1

and O ~; in the opposite case, if in one way or another our knowledge

of the physical phenomenon should widen and lead us to a change in our
hypotheses on the singularities, it will still be easy to obtain the
desired solutions, provided the conical character of the flow is main-

tained41.

41See Appendix No. 4.
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IV - THE COMPOSITION OF CONICAL FLOWS

ITS APPLICATION TO THE AERODYNAMIC

CALCULATION OF SUPERSONIC AIRCRAFT

We shall show in this chapter how the conical flows studied in the
previous chapter and possibly the homogeneous flows defined in sec-
tion 1.3 of chapter I permit to study, at least in certain particular
cases, the various elements of a supersonic airplane (fuselages,wings,
controls, etc.) by “superposition” if one can apply the general method
of linear approximations. Our aim is not to furnish all possible appli-
cations nor to give all the formulas the constructor may need. We
shall, rather, insist on the principles of such a composition; we shall
give the simplest and most significant results and, more specially,
those which, at least to our knowledge, have a character of newness.
We shall voluntarily reserve the results of technical character for a
later publication.

Such a superposition is justified by the linear character of the
fundamental equation (1.10). The simplicity of the following arguments
frequently results from the rule of “forbidden signals” which we have
stressed already in section 1.1.4.

4.1 - Application of Conical Flows to the

Calculation of the Wings

In his fundamental memorandum, often quoted above (ref. 4),
Th. Von &“rm&n indicates that the theory of conical flows permits the
investigation of wings the profiles of which are formed by straight

lines42. We intend to show in this paragraph that one can investigate
a wing of finite span and with a curvilinear profile by means of compo-
sition of conical flows. Like the problems of conical flows (compare
chapter III), a wing problem may be divided into a symmetrical and a
lifting problem.

‘eshallnOte ‘+klJx,) and 5-(xl,x2)J theinclinatiOns 0fthe
top surface profiles (X3=+O) and bottom surface profiles (X3=-O)

42The subject of a certain number of memoranda is the study of
wings with polygonal profile. One must then superpose a finite number
of conical flows. The most recent and most complete investigation of
this problem is the one by A. E. Pukett and H. J. Stewart (ref. 30). .
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of the wing investigated,and we shall put (compare fig. 56)

b+=.i+~+ b-=-i+u-

with i representing the general incidence of the wing (one will define
it as the incidence of the chord of one of the sections). We shall then
put

In the case of a purely symmetrical problem

i =0 JO=()

In the case of a purely lifting problem

a.()

Let Cp- and Cp+ be the pressure coefficients on the upper side

and lower side of the wing. The local c= “and the local Cx of a sec-

tion parallel to Oxl,x3 will be defined by (compare fig. 56)

c= = h CP- - )
Cp+ dxl

mm’

Cx = J( CP+5+ )- Cp-b- dxl
mm’

Designating by CP(l) and CP(2) the pressure coefficients obtained

in the study of the symmetrical and lifting problems, the
of which gives the general problem investigated, one has

superposition

(j(1) +Cp(a
CP+ = P

c (1) - CP(2)
CP- = P
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and consequently

Cz = Cz
(2)

CZ(2) being the local Cz of the lifting problem and

J C!P(l)(CL+- cjj-)dq + s cp@)(-2i + a,++ U-)dxlCx =
mm’ mm’

s Cp(% dx + 2
s

cp(2)(-i + Jo)dxl= 2
mm’ ‘ mm’

Cx(u+42)=

CX(l) and CX(2) designating the local Cx of the

lifting problems43.

Designating by Cz and Cx the total-lift and

one will, of course, have

symmetrical and

drag coefficients,

Cz = CJ2)

One sees thus very clearly how a general problem is divided into a
symmetrical and a lifting problem. One may say, figwatively spea$ing,
that the symmetrical problem investigates “the effect of thickness
snd that t;e lifting problem investigates “the effect of curvature and
incidence. We shall treat these two problems successively.

430necould put: CX(2) = C’X(2) + icz, noting that

C’X(2) = 2
J

, cp(2)j0 dx~. The local Cx is, therefore, the sum

of CX(l), ti%g due to the thickness, c‘X(2), drag due to the curvature,

and of icz, drag due to the incidence (induced drag).
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4.1.1 - Symmetrical Problem

4.1.1.1 - Rectanpylar wing with symnetrical

profile and zero lift

4.1.1.1.1 - General remarks.- The projection of the wing is a rec-
tangle (R): ABA’B’ (compsre fig. 57). We shall put

AA’=BB’=2 AB =A’B’ = AZ

The problem is to find a flow such as to make the value of the
normal component 0 zero at every point of the plane ‘3 = O, except

in (R). Furthermore we shall, for a start, assume that the wing cross
section is constant for the entire span. This profile, symmetrical
according to hypothesis, will be defined by the function a (xl) which

gives the value of the inclination of the profile (supposed to be small)
toward the axis of the xl; u will therefore assume the

value m+ = a(xl) on the upper side (X3>O) of the rectangle ABBtA1,

and the opposite value m- = -a(xl) on the lower side (X3 < o).

In order to solve the problem, we shall compose conical flows the
vertices of which are situated on the sides AA’ and BB’.

In order to simplify the notation, we shall call ~s(M,a) the

elementary symmetrical conical flow which has its vertex at a point M
of the plane 0X1X2 (compare fig. 58) for which w is zero outside of

the quadrant limited by the semi-infinite lines parallel to ox~ and 0X2

issuing from M; w is equal to the constant a on the upper part of
this quadrant and to -u on the lower part. ~s(M,a) will designate

an analogous flow where the axis ox~ will have been replaced by its

symmetrical counterpart. Such a flow has been investigated in sec-
tion 3.2.3.1. If one designates the angle by T, the for-

mulas (111.59) show that the pressure coefficient CP is given by

[
Cp.-++

1
Arc sin(~ tanq) @tan Vl<l (Iv.1)

p2Yl

CP
=Oif@tanV<-1 =~if J3tan9>lCP p
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4.1.1.1.2 - General principle of the superposition.-Let us visu-
alize, first of all, the superposition of the following flows

t.~,.(o] [ ]and & B,cL(0)

The resultant flow gives in the plane ‘3
= O the values of w indi-

cated by the figure 59(a). If we now subtract the tin-dimensional flow
about a dihedron of the angle 2a(0), it is disposed symmetrically
with respect to the plane 0X1X2 and has OX2 as edge; the semi-

infinite Oxl is inside of the dihedron, and one obtains in the

plane x3 = +0 the values of w indicated by the figure 59(b). This

gives us the principle of the composition. -+til.l obtain the desired
flow by superposing conical flows of the type Cs the vertices M of

which will be situated on AA’, conical flows of the type %s the ver-

tices of which will be situated on BB’, and by subtracting suitable
two-dimensional flows. It will be possible to schematize the flow in a
precise manner as follows

J’
?’(M, da) +

J [1
~s(M, da) - E a(xl)

AA’ BB‘
(IV.2)

designating the two-dimensional flow

infinite span the profile of which is identical with
the given rectangular wing.

about a wing of

the profile of

In fact, one verifies immediately that the flow, symbolically
defined by the formula (IV.2), satisfies the given boundary conditions.
We want, nevertheless, to specify that the integrals of this formula
ought to be understood in the sense of Stieljes, in order to understand
the case where the function a(xl) will represent discontinuities of

the first kind. Such discontinuities exist, in general,
edge AB and at the trailing edge A’B’.

4.1.1.1.3 - Study of the flow
J

ds(M, da).- In
AA’

at the leading

order to make

this investigation,we introduce the axes Axy, Ax parallel to Oxl,

Ay coinciding with 0X2, and put

x_ xx--
1

PJ=p
1

ax(xx) = CL(x)
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The section of the Mach
semi-infinites which have as
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cone behind the point A is formed by two
equations

Let (Xx,yx) be the reduced coordinates of a point P of the

plane Axy (fig. 60). We shall suppose ~ <1. If O <xx< ~, the
point P is outside of the Mach cones behind all points M of the
segment AA’; consequently, according to equation (IV.1)

If now O < ~ < xx, the point P is outside of the Mach cones of
the points of the segment PIPO, but inside of the Mach cones of the

points situated on ml) PI being the point of M’ of the

abscissa xx - Yx” Besides, the conical flows, the vertex of which is
on P&’, have no influence on the point P. Consequently, the pressure

at the point P is written, according to equation (IV.1)

or

[ 1Cp = * 2UX(F) - P(x%fi)

1

(IV.3)

J

xx
-?

P(xx,yx) =Ux(x’x - yx) -; Arc sin Y
xx-~ dax(~)

o

This formula, set up for the case where O < yx < xx, may be extended

to the case already studied O<S<fl since ‘a may be considered
zero for the negative values of the abscissa.
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One can now calculate the drag of the section ~

J

1
CX(YX) = 2 0 cp(~~y%x(~)d~

Consequently

CX(F)

&~~ax(~)d~~’-yxArc sin~dax(q)

or, changing the order of integration in the last term and putting

J

1
a.x2(~)d~=2

o

%

J

1
F(F) = 2 ax(E)ax(E -fl)dE -

Y

~

J

l-f

J’

1
dax(q) Y a,x(~)d~‘&c sin —

E-q
(IV.4)

‘o p+q

(F) =$&(j#)Cx

#

According to our conventions, if ?>1 ‘

F(F) =0 Cx(d) = y
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Such a section actually behaves
infinite span which is quite obvious

~, - signals. We note in addition that

thus the drag of
tion at infinite

Cx(o)

the section yx =
aspect ratio.

like the section of a wing of
according to the rule of forbidden

is half the drag of the same sec-

We want to point out another remarkable result

(IV.5)

that is, the mean value of the drag in the region O < yx < 1 where

the Cx(yx) is not constant is equal to the value of the drag in infinite

flow.

,
In fact, first of all

if one puts

J’
x

ex(x) = ax(~)d~
o
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On the other hand

If we put in the last integral

Y‘= (~ - q)sint

the preceding expression becomes equal to

( )[
1

J’

E

( )[lf1Ii -1 UX(g)d~ (5 -?)da.x(~) = :-1 ~ux2(~)d~ -
2 0 0 0

The formula (IV.5) is thus justified.

4.1.1.1.4 - Study of the rectangular wing with constant profile.-
We shall call the quantity ~A, which we shall note 2T(), (BA = 270),

the “reduced aspect ratio” of a rectangular wing.

We shall designate by t the “reduced chord”

‘1t=i

and we shall put (compare fig. 56)

13X2
~=

-r
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In applying the fozmmla of composition (formula (IV.2)) one sees
that the pressure coefficient
given by

%Jt)q)==y .

P is the function defined by
tion q is given by

at a point of the rectangular wing is

;~t,~o + ~) + ‘@o - ~j
(IV.6)

the formula (IV.3). The drag of the sec-

GJn) =4%- ;~’ ~(t>,,+,) ++,,, - jax(t,dt

However, by definition

F being,

we remark

J’
1

2 P(t,u)ax(t)dt =F(u)
o

besides, the function definedby equation (IV.4). Consequently

~2
[(lFqO+Cx(n) = ~ - ~

that if q, >1, that is, if

one of the functions F zero; in this

close to the center is equal to g.
B

of the principle of forbidden signals.

A >~, there is
B

case the Cx of

(IV.7)

always at least

the sections

This is an immediate consequence

Now we can finally calculate the total drag which we shall fix by
the coefficient
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If one puts

J’

v
o(v) = F(u)du

o

one sees immediately that
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(IV.8)

However, the result obtained by the formula (IV.5) smounts to
stating that

O(v) = O if v al

Consequently, the drag of a rectangular wing has a value independent

J1’ziziof the aspect ratio and equal to —
P’

greater than ~.

Summarizing, one may say that the
metrical rectangular wing of zero lift

for geometrical aspect ratios k

complete investigation of a sym-
amounts to calculating the func-

tions P, F, # which are all calculated by quadrature.

4.1.1.1.5 - Applications.- 1. The profile is a rhomb; in this case

We shall now
tion (IV.4). For

fl

ax(t) = ~ if t<$

ax(t) = -~ if t >;

calculate the function
this purpose we remark

E=aQ

F(yx), defined by equa-
first that

J UX(E)U(E - yx)dE =
P

[
-aQ2(l-yx) if *<@<l
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There remains to be calculated

J

l-F ~x(n)

J

1
~ ux(~)d~Arc sin —ti- ..–

‘o p+q E -n

However,

J

b
Arc sin R d~ = (b - q)Arc sin ~ - (a - q)Arc

a b -n

( )
y%gchb&-Argch&

as one sees immediately, integratingby parts.

179

If O< ~~ ~, ax(q) is subjected to two discontinuities, the

first for q = O, the contribution of which is

[

12 ~hc sin 2fi + y%krg ch%2 )(
—-:* - Arc sin ~ -
2yx

~Arc sin 2~
)( ]

-fl Argch$-Argch~
2 2~

the second for q = ~, the contribution of which is

If F >*, only the discontinuity for q = O comes into play, the

contribution of which is
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If one assembles these partial results and puts
.

Y(y-q s;

one sees that one may write in a

and consequently

I
(IV.9)

for fl>l

general manner

1

+ Y(yx) - 2Y(2yq

1

[

4’%2 1
c.Jn) = --z- Y(rlo+q)-Y(T-io - Jn) + 2Y(2no + 2TI) + 2Y(2qo - 2q)

(Iv.lo)

Figure 61 gives the variation of cX(q) for two values of qo.

For knowing, fina~y, the total drag it suffices to calculate the
function o(u).

Now

with

[

J=D(u) = ~ + 2 Arc sin u +
u

L
1

IuArgch~ if O<u~l
u

D(u) = 1 if U>l
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Hence

[ 1

O(U) = ~z ~&+ D(uI - U D(2u)

Consequent~, applying equation (IV.8), one obtains

(Iv.11)

(IV.12)

One will find In figure 62 the curve giving Cx as a function of

the reduced aspect ratio.

The curves of the figures 61 and 62 have already been given by
‘III.Von K&m6n (ref. 4), but this author does not give any analytical
formula. Moreover it seems as if the results Th. Von K&m&n’s had been
obtained by application of the method of “acoustic analogy.” The curve
given in figure 61 may also be found in a memorandum of Lighthill
(ref. 31) whoutilized the method of sources.

2. The profile is formed by two symmetrical parabolic arcs; in
this case one must put

o+(t) = CO(1 - 2t)

Eo characterizes the thickness of the profile.

The problem consists in calculating the functions F(yx) and O(v)
defined in the previous
of elementary character

paragraph. One finds after a few ’integrations

and

4E02
a(v) =—

37t 1YwJ3’
4

(IV.14)
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On the other hand

NACA 7311354

the

of

One can clearly verify that

2C02 2=2
F(0) =—=

3
F(1) = O 0(1) =0

In figures 63 and 64 one will find the distribution of Cx over

span for a wing of reduced aspect ratio 2qo = 2, and the variation

Cx (total-drag coefficient) as a function of the aspect ratio.

4.1.1.1.6 - Case where the profile is variable in span.- It is
possible to calculate the symmetrical rectangular wing at zero lift in
the general case where the profile is variable in span. We shall here
be satisfied to examine the relatively simple case where the profiles
along the span are deduced from one another by affinity; the ratio of
the affinity varies with the span. We shall assume that the wing of

reduced span 2r10 has a local inclination of the form k(q)ax(t) at a

point of reduced coordinates ~, t.

The function k(~) must of course satisfy the usual limitations
so that the problem posed can be treated by means of linear approxima-
tions. Finally, we shall assume the function k(~) to be even in q.

Let us first of all remark that the wing of reduced span 27, the
profile of which (which is constant along the entire span) is defined by

the function ax(t), causes outside of the wing, at a point of reduced

coordinates t, YX(YX > v), a pressure coefficient

[ 1
Cp(t,yx) =;P(t,yx-v) -P(t,yx+v) (IV.15)

P is the function defined by equation (IV.3) as one sees reassuming the
arguments of the sections 4.1.1.1.3 and 4.1.1.1.4.

One will now obtain the desired boundary conditions by superposing
a succession of rectangular wings which are symmetrical with respect to
Olxl, of equal chord reduced to 1 and of variable reduced
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span 2q(0 < ~ < no) for which the profile remains constant in span.

This is j-ustifiedsince k(q) had been assumed to be even.

.=-
At a point ~t,~) th{pressure coefficient ismitten

[

m)
cp(t>~) ‘;zax(t)k(fl) + $( P t,q + #)dk(q) +

o

All these integrald are taken in the sense of Stieljes.

One will obtain a simpler formula by

c being defined by the equality

In this case

putting

—
- V) ~ dk(q)

v

(IV.16)

(IV.17)

This formula is reduced to the formula (IV.6) in the case where
k(~) = 1 over the entire span.

The drag of the section yx is easily obtained

cX(fl) = ~k2(~)E2 - ~~(FJno) + E(-F)noj (IV.18)

—— - —-------- . . -.——
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by putting

J
1

=.

o

~(t,v,qo)ux(t)dt

(IV.19)

F is the function defined by the equality (IV.4).

Thus one can see that the pressure coefficient and the local-drag
coefficient are e~ressed by formulas analogous to those obtained in the
case where the profile is constant under the condition that the func-

tions P(t,yx) and F(d) are replaced by weighted averages, ~(t,v,qo)

and g(v~?o)~ defined by the formulas (IV.16) and (IV.19).

Finally, the total-drag coefficient is obtained immediately

whence
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As an example, we shall suppose k(q) to be defined by

One will.then have

If v is positive

sv
1

J’

qo-v
. -— F(u)du + ~

~o o ~o ()
F(u)du

J’

v
~(v) = F(u)du being the function introduced before in sec-

0
tion 4.1.1.1.4.

If v is negative: v = -v’

1 J
qo+v’

.—
Tlo VI

F(u)du

.

- .,.-. ..— ..---
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Let us recall that O(V) = O, if VZ1.

It is then easy to make
where the profile is a rhomb
arcs.

One will find the curve

applications of this formula in the case
or lenticular formed by zero parabolic

which

tion of cx as a function of yx,

in figure 65.

4.1.1.2 - Study of

gives in the first case the varia-

for a reduced aspect ratio qo = 2,

the sweptback wing

with constant profile

Without investigating the sweptback wing as thoroughly as the
rectangular wing, we shall show that one may, without essential diffi-
culty, apply the method used for study of the rectangular wing for the
sweptback wing of constant profile the plan-form of which is schematized
in figure 66. We shall suppose that the plane 0X1X3 is a symmetry

plane for the wing. With 7 designating the angle of sweepback, it
is obvious that we shall have flows of different type according to
whether the leading edge AOB will be outside or inside the Mach cone
of o. One has become accustomed to say that in the first case the
leading edge is “supersonic” while it is “subsonic” in the second case,
thus recalling that the velocity component normal to the leading edge
is higher than sonic velocity in the first case, lower in the second.

The number V, defined by: ~ cot y = $, (V <1 characterizes the case

where the leading edge is outside of the Mach cone, v > 1, in contrast,
the case where it is inside) will, therefore, be an essential parameter
in the investigation of sweptback wings.

4.1.1.2.1 - Case where V < l.- We shall put in this case v = cos (3.
We shall define, as for the rectangular wing, “the reduced aspect ratio”
270 (compare figure 66) by the relation

‘q. = ph

if A designates the span of the wing taken along 0X2.
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For simplificationwe shall assume that the profile chord is taken
as length unit, and that the profile is defined by the function U(xl))
with xl varying from O to 1. It is obvious that the desired flow

will be obtained by a superposition of elementary conical flows which
one may note schematically

1 C~(M,du,f3)-
J“

C~(M,da,@) -
J“

Cs(M,du,e)
00 ‘ BB‘ AA’

Cs(M,du,@) designates a flow completely bisecting the Mach cone,

admitting the plane ox~x3
+

as symmetry plane (section 3.2.2);
Cs(M,da.,(3)designates a flow partially inside of the Mach cone; the

sign
forms

to be
cient

+ indicates the direction of the bounding generatrix which
with 0X2 the angle y; the other bounding generatrix is supposed

parallel to the wind. Because of the symmetry it will be suffi-
to study the region of the wing where x2 > 0.

It will be convenient to put

Yx . px2

xl . x + pCOS e

A conical flow with the vertex Mo(xl = ~, X2 = O), of the ty_pe

cdMoJaJe)

causes (compare formula 111.53) the following pressure field in the
region yx > 0:
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‘Arc““[=1

Cp -4a 1
~n sin e

if O<t<l

I
x..

t being defined by t = Y
x- E + yxcos e

Cp = 2U
~ sin @

if l<t<l
Cos e

Cp=o if t>~
Cos e

1

At.a point (XJYX) the pressure

J
Cs(M,de@) is equal to

00‘

r
2 a(x)

[
-ax-

p sin @
yx(l -

coefficient due to the flows

1
co’ e) +

L

~-yx(l-cose)

Arc sin
sin El(x- s + y%OS 8)

)
J(x - E)(X -5 + 2yxcos e)

2

[

a(x) -
1

Q(x,fl,6)
~ sin 19

— —..
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putting

[ 1
Q(x,yx,e) = ax - yx(l - cos 19) -

J
X-yql-cose)

~ Arc sin sin e x - E +yxcos e)
11

J(x - E)(x - g + 2yxcos e)
o

J
X-yx(l-cose)

z Arc Cos L’in‘+ - E + yxcos e)]
3-(

x- E)(x - ~ + 2yXcos e)
o

Let us note that

Q(X,YX,O) = O if yx(l - cos e) >X

and that the same holds true also in the case where the sweepback is

‘ero P=:)”

For simplification,we shall henceforward assume 1
70>1+COS8

(which will always be verified if q. > 1), that is, that the edge AA’

has no influence whatsoever on the wing region X2 > 0.

The contribution due to the flows
J

~(M,da,@) is very easily
BB‘

obtained from the formula (111.58). The pressure coefficient due to
these flows may immediately be written

CP (
= P X,qo - yx,e) 1

p sin O
.

,,.
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if one puts
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P (X,yx,e)
[

=ax-
1

yx(l + Cos e) -

J’
Xx-y-ql+cose)

g

[ 1
Arc sin ‘sin” - .0s ~ da(~)

‘o
x- E

(IV.22)

If 13= ~, one falls

mula (IV.3); on the other

back on the function P defined by the for-

hand, P(x,~,G) is obviously zero if

yx(l + Cos e) >X

Finally, with the reservation that

1
‘O>l+cose

one has at a point of the wing

Cp= 1
[
2ax(x) -

p sin 0 (
~ e!2Q(x,~,~) - P x,~o - , (rv.23)

The local-drag coefficient is immediately obtained

cx(Yx)=B::e- 4 G(#$(3) - ~& eF(rIo - #,0)
p sin e

(IV.24)

..—.—.. . ... ,,, ,,, , ,,. ,
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putting

J
1

[

X-yx(l-cose)
G(yx,6) =:

sin e x - ~ +yxcos e)
U(x)dx Arc Cos

yx(l-cose)
Jx-E)(x - g + 237COS e)

o

F (yx,8)

The calculationof
followingremarks:

1.

J’
1

= 2 a(x)a~-~( ]l+cose)dx -
yx(l+cose)

J

1
~

J

X-yx(l+cose)
a(x)dx

[ 1

Arc sin ‘sin” - co. 19da(g)
fi x-

y’x(l+cose)
5

0

(IV.25)

(IV.26)

the total.drag offers no difficulties. We shall content ourselveswith the

J
1

l+cose
F(yx,O)dyx= O

0

,Thisresult is establishedin the ssme manner as in the case where O = ~ (comparesec-

tion 4.1.1.1.3).



192

It signifies that the effect of ltiitation of the
modify the total drag.

2.

J’
1

l-cose
G(~,@)d~ = O

0

DI fact, this expression is equal to

NACA TM 1354

span does not

Iu(x)bJxda(E)I-cOseii::t::::~::)@
The last integral is written

J

1

(x- E) Arc Cos sin 6

0 - ‘1 - flos ‘)2

If one puts

t= Yx

x- 5 + y-xcose

.
the result is then immediate. It signifies that if TO > 1

1 - Cos e’
the drag of the investigatedwing is identical with that of the yawed
wing of infinite span

(IV.27)

3. If 19= O (the leading edge is situated on the Mach cone of O),
the given formulas present an indeterminateform. Nevertheless it is
very easy to eliminate the indetermination. We shall, in particular,
calculate the total drag. The value we shall obtain is very interesting
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because it corresponds

193

for a given sweptback wing to the maximum of the
total drag when the Mach number

,. If .9 tends toward zero,

1— Arc
sin e

varies.

has as a limit

x- ~+yx.J+-t2 Jx-k)(x-&+2Yx)

We assume 70 > :,–“ since our purpose is calculation of the total

drag, the edge BB’ may be neglected. The desired total drag which we
shall denote by C

%x
is written

whence, carrying out the last integration

(IV.28)

One thus obtains a very simple formula giving the value of the total Cx

when e = O.
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If the profile is a rhomb, one sees, writing

c%. ‘%W(;)-q
putting

[$-
U 1 sx + 270

o(u) = (2x + l-lo)dx= Uqu + 27.)2x
o

whence

[

J

1

3

C%x = (Cx) 2 (1 + 470)2 - (1 + 2qo)2
~ 31T 70

(IV.29)

L -1

In figure 67 one will find the variation of Cx() as a function
msx

of’ 70”

If the profile is formed by two parabolic arcs,

a(x) = CO(1 - 2x)

and

— —
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or

8E02
=—~1(1) -6J(1) +6voK(l) +o(lj

“mx 3pJrq~.,

putting

J

‘2
I(x) =

: -’wq’ + 2’0)2(’ - ‘J +
X2(X+ 21-lo)U –k

o

J‘~ 3
J(x) = ‘2 (x + 2qo)%X ‘ : J-

0 [

(’ + 2qo)2

J
‘1 1

K(x) = X2(X + 2To)Zdx = ~

o

1-1o
- --(x + 27.) -

+- no) -

Hence

%’=%[-ok’o+w++~o’,og’+’o;o
(IV.30)

One will find the corresponding curve in figure 68.
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4.1.1.2.2 - Case where v > l.- We shall begin by exsnining the
case of an infinite half-wing inside slip (compare figure 69).

It is convenient to put

V.1+C2
2C

The flow is obtained by a superposition of conical flows symbolized by

+
with Cs(M,du,c) designating

3.1.2.2. in the case where b

1’+Cs(M,da,c)00‘

t=—

the elementary flow

= o. If one puts

Yx .

x- E+wx

the pressure coefficient is given by the
be written

2p

l+pz

(IV.31)

investigated in section

(IV.32)

formula (111.23) which may also

Cp = 2a log

I

1 - Cp

~fiJ~ c-p

This formula is valid for lpi <1. If Ipl >1, one has Cp = O.
One sees immediately the essential difference compared to the cases
investigatedbefore: a conical flow with the vertex (~0) can influence

a Point (X,Yx) for which x< E. In particular, the trailing edge will
play a role in the calculation of the pressure. Finally,
p = c, the CP

of the corresponding conical flow becomes

the method remains exactly the same, one must also expect
tional difficulties.

The pressure coefficient at a point of the wing will
written

if X=E,
infinite. If

a few addi-

therefore be

— —..— —..-.-.——. 1. l.. . , -.,,,... . ,,, , ,,, , . . . . , ,—, —, ,-., ,,, , , ,,, ,,. , -,.,, ,
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The

J
X+(v-l)yx

cp(x,y-x)= 2 log 1

I
~ du(~)

@fiJ’ 0
c-

course defined by the equality (IV.32).

Cx of the section F is then written

lg

Cx(fq =
,fiJ&J’”(t)’ttt+(v-’)F’ ogl: : ~’ ‘a(g)

One will notice that, for yx = O, p = O; and consequently

Cp(x,o) = 2a(x) log : . 2a(x)
l+ +J=]

plTJ’ c pfiJ=-

As in the case of a

on the local inclination

wing of infinite span, the Cx depends only

of the profile. Likewise

d4ti210gv+v2-1Cx(o) = —
P flz

(IV.33)

The calculation of the function cx(p), for yx#O, presents no
theoretical difficulty whatsoever. We shall now calculate the drag of
the infinite half-wing, and shall show that it is finite in spite of the
infinite dimensions of the wing. Assuming X to be this total drag,
we shall put

Our purpose is the calculation of Cx.
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The desired value of Cx will be the limit, if it exists, of the

integral

I(yOx) =

fll px+(v-l)yx

when yox increases indefinitely.

In order to calculate this triple integral, we

ensemble of the variables yx,x,~ by the variables

tional determinant
D(yx,x,~)

is equal to
D(x,~,P)

log
1

I
- ~p da(<)

c-

shall replace the

XJ~JP; the func-

d~ ‘C’(X - 5)(1 - p’)—.
dp (p - C)’(1 - pc)’

This expression one obtains from equation (IV.32) if one writes this
equality in the form

3+’
zpc(x - E)

(c - p)(l - pc)

The volume in which the triple integral must be calculated is
represented in figure 70. One can write



I(yOx)=

PZ.b[’(x)ti[(x-’)da(’)ro(x-’)’og

=!
g’

1 - Cp

I
(1 - pz 2C2 *

dp +
c-

P (P - C)z(l - CP)2 ~
w
b
F

dp (IV.34)

PO(X - g) and P1(5 - X) are defined,respectively,by the equalities

Zpo Yox= X>E
1+P02 x- E + Vyox

2P1 . Y“x

1+P12 x-~+vyx
E>x

o
J

Then one will have to make yox tend toward infinity. Under these conditions, p. and

PI tend toward c; but it is impossibleto make the transitionto the limit brusquelybecause

the triple integralthen assumes indeterminatevalues. We remark likewisethat, if the two
limits PO and P1 are replacedby two constantnumbers, one smallerthan c and the other G

w
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larger than c, the triple integrals of equation (IV.34) will be zero
because

L1a(x’tiK ‘x - ‘)’a(E) ‘0

J’a(x)~~’ (E-x) da(E) =0

Since one wants to calculate the limit, if it exists, of
()I Yox j

one will utilize the limited developments. Let us put

p=c(l+r)

log l-CP = log 1-C2 - c2r +. . .
2C2(1 - ~2)

c- P cr 12-c IL - P)(l - PJ12

2 Al+=
1 . C2 r2 (

We desi~ate the values of

r. and rl; in the integrals

sPo
log

L

l-a-z+ . . .)

r corresponding

1 - Cp 2C2(1 - pq
c-

P (P - C)2(1 - PC)2

-1

to PO and P1 by

dp

and

J’log 1 - Cp

I

2c2(~ - P2) dp

Pl c- P (P - C)2(1 - PC)2

one may neglect the terms which are constant with respect to x and 5,
or infinitely small with respect to r. and rl. Thus there is every

reason to maintain only
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and

1
2=2 ~ ~ dr

(1 - C2)2 r

201

which gives for the first

[112C 1 log
cro +1 2C3—-

_ C2 ro
1

logIroI
1 1 2 ‘o-c (1 - C2)2

and an analogous expression for the integral
J

.
rl

But if one puts

x- Ec— .
Yox

r=~.- 1+~1 +...
c d—(i- 2-

2CV2-1
)

and one obtains an expression of the form

Goge+ :+C log E + . . .
E

the dots indicate terms not infinitely large which may be neglected,
according to a remark made before.
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~ log e gives in the first triple integralThe term in ~

‘~J1a’x’tirdu’’’lOglx- ‘1

and in the second (the one which corresponds to Pl)

‘d’m(x)Yrdu(E)lOglx- ‘1
Hence, summing up

The term in * brings into the first integral the contribution

‘0’11 a(x)bl’ da(’) ‘m2y0x

and into the second

r1 r1Yox a(x)” da(~) = ‘+yox

Finally, only the term in log e
Now

—

1
~2

c=- 2C
1 -c21_&’

gives a result which is nonzero.
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md since

2C=

‘e -1 1-C2

one sees that one obtains

c’=&%$T “(x)&J’‘O’l’- ‘1“ -‘)’”(’)
One may replace c by its value as a function of 7 which gives

the simple expression

c’=: -J’ “(x’bJ’ ‘g-“’o’!’- ‘Ida(’)
(IV.35)

Let us take, for instance, the case of the rhombic profile. One then

finds immediatelythat the double integral is equal to ~210g 2. This

result, in the special case of a rhombic profile, has been given by
Th. von Karman (ref. 4).

If one takes the profile formed by two parabolic arcs

a(x) = G(1 - 2x)

one finds as value of the double integral c2/4 = e2, with e desig-
nating the relative thickness of the profile. With an equal relative
thickness and equal sweepback, the drags are in the ratio log 2 = 0.69
whereas one obtains for an infinite wing, straight or oblique, the
ratio 0.75. Thus one deduces that the rhombic profile is even more

advantageous for a sweptback half-wing44.

44If one compares the drags, at infinite aspect ratio, of a pro-
file formed by two parabolic arcs and of a rhombic profile, of equal
area, one finds that the first is 3/4 of the second. With a pronounced
sweepback, this ratio is equal to 0.%.

L
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If one wants to investigate a bounded wing,
sented in figure 71, one must add the end effect
It suffices to subtract the flow symbolized by

-J’
~s(M,da,c)

BB ‘

like the one repre-
due to the edge BB’.

(rv.36)

from the flow defined by the formula (IV.31). The pressure coefficient
due to the flow symbolized by equation (IV.36) is written

1
~-(l+v)(vo-d) log

l-cp da(E)
cp(%F) = . 2

P.= 0
c -P

with

2P = Yx - v~

l+p 2 ~- E + V(YX - ?0)

with Cp being zero if X< (l+v)(qo-yx).

_LIf ~. >=, the edge BB’ does not influence the point O’.

In this case it may be easily shown that the contribution of the flow
(equation (IV.36)) to the total drag is zero. In fact, this contribu-
tion is proportional to

J?vJ’

1

J’
X-(l+v)y’x

dy!x a(x)dx
I

~ ~p da(~)
(l+v)y’x o

if one puts



I
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One may make the change in variables used before which consists in
replacing y,x,~ by x,~,p; one obtains

!> -..

which is evidently zero.

This justifies a remark of Th. von K&m&n (ref. 4).

For wings of high-aspect ratia, one may adopt, without large error,
the formula (IV.35) for

The calculation of
on the hypothesis that
performed. It suffices
the preceding formulas

Since

the total drag.

the drag of an infinite sweptback wing (fig. 72),
v > 1, is perfectly analogous to the one just
to replace, according to section 3.1.2.2, in

by log - + log ~
c -P c+” I

log LA&Q . log l+C* +C24
C+p *C 2(1+C’2) r

it is sufficient to combine the expression

c 2 Cos27=—

%*
11+C2 1/2

n sin 7(1 - M2COS27)

with the coefficient of the double integral of the formula (IV.35).

However, one thus attains only the drag for half the wing (x2 > O);

one must therefore multiply by 2 in order to obtain the desired formula

cx=kdzl+2sin27- M2COS2
n sin 7

(1 - M2COS27)3’2 7J ‘(x)dxJ1(’ - ‘)lOglx - “da(’)
(IV.37)

I



206 NACA TM 1354

According to the remark just made, this formula gives, for a sweptback

wing of high-aspect ratio, an approx~te value of the total dragkq.

We shall borrow from the memorandum Th. Von K&&n’s the figure 73
which illustrates the usefulness of the formulas found above for the
study of the variation of the Cx of a sweptback wing of high-aspect

ratio with the Mach number (the profile is rhombic, the sweepback
angle 7 = 45°, and the reduced aspect ratio 70 = 4). We obtained in

the course of this investigationthe value of the C%x (point A of

the figure) by the formula (IV.29), and the portion of the curve from
B (formula Iv.27). The dotted part at the right of the abscissa M=@
is calculated by that same formula. One sees that it indicates also
the behavior of the exact curve. Finally, for the values of M<@,
the dotted part corresponds to the formula (IV.37). It represents a
good approximation of the rigorous values, except for the immediate
surroundings of M = @.

Here we shall stop the investigation of “symmetrical” wing prob-
lems. One sees that this method leads to simple results and that the
calculations are always elementary. The field of application may easily
be extended to more general cases (trapezoidalwings, leading edge cur-
vature, etc.).

4.1.2 - Lifting Problems

Study of the lifting problems is generally more delicate. In fact,
the boundary conditions furnish on the wing the values of w, but out-
side of the wing (in the general case) w is different from zero; on
the other hand, continuity of the pressure is required which leads to
supposing (in pmsuance of the hypothesis of linearization as noted in
chapter III) that u = O in the plane Oxl~ outside of the region (R)

occupied by the wing. The difficulty lies in the fact that, in the
general case, the boundary conditions bear up on two of the velocity
components.

4.1.2.1 - Problems where the condition u = O

may be replaced by W.()

The rule of “forbidden signals” permits to define a general class
of lifting problems where it will be possible to replace the

45Compare appendix No. 5.
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condition u = O by the simpler condition w = O. This will be the
case for wings, the projection (R) on 0xlx2 of which will satisfy

the following condition:
L

With C designating the contour of the plan form (R), the tangent
to (C) forms, at every point of (C), with Oxl an angle which is

larger than the Mach angle.

Naturally, such a contour (C) will present angular points. It
is understood that, at these points, each of the semitangentsmust
satisfy the condition stated. For the sake of abbreviation, we shall
say that this contour is entirely supersonic.

Let us consider a point M of (R). As we remarked in sec-
tion 1.1.4, the state of the fluid at M depends only on the perturba-
tions inside of the Mach forecone of the point M; this forecone cuts
off, in Oxl~, a portion of (R) on which w is given, and a portion

of the plane Oxl~ in which the general flow is not disturbed (sec-

tion 1.1.4) and on which u = v = w = O. In order to calculate the
pressure at the point M, one may suppose that w = O outside of (R).
One may also say that, under these conditions, the upper and the lower
surface of the wing are independent. The solution of the corresponding
lifting problems is therefore perfectly analogous to that of the sym-
metrical problems visualized in the previous paragraph.

Let us assume, for instance, a flat plate of the plan form indi-
cated by figure 74, with the contour (C) being entirely supersonic;
the pressure at every point of this plate has been calculated in
chapter III. We intend to calculate the total Cz. One has obviously

J
Wo

Cz=.+ Cpr2dcp
f.111

if one puts

x=p~—=@tanq
xl r=OM

with S being the area of the region (R). Let us put furthermore

A=ptanwl ~=ptanmo P(x)=-=-
p2 + X2

P(x) depends uniquely on the trailing edge B’AB.

I
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One then obtains the formula

NACA TM 1354

Let us recall that

[

2i 1-.—
p sin f30

(Iv.3&)

if l<x<~

{( Cos 60 - x
Cp(x) = - =- Arc Cos 1 x-

— Arc Cos
Cos e~

+
fihtsin EIO 1 - x Cos eo sin el 1 - x Cos el)

[

if -l< X<+l
2i 1-—— if X<x <-1
p sin 01

with i designating the incidence counted according to the usual con-
ventions.

h a recent memorandum, M. Snow (ref. 32) has applied this method to
the calculation of the total Cz of a plate in the shape of a quadri-

lateral. We simply want to point out that, in a certain number of cases,
it is possible to calculate the integral (IV.38) very simply. This
simplificationbecomes apparent when P(x) is analytic. It is then
yossible to use integrals in the complex field (variadle z or Z).

Let us suppose to begin with that the contour B’AB is rectilinear
and that its polar equation is written

r.
r=

(
sin cpo- v)

r.
OA=l=— Xo = p tan

sin 90

tan290(tan~ - tanqS=2
X2

=—
2 (tan Cpo- tan~)(tan 90 - tanq) 2f3

X02(IJ- N

(XO-V)(XO -A)
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P(x) =
&-02

cos%o (x - Xo)2

-.

and consequently

cz=-
J’

f3r02 V Cp(x) 2f3r02
dx=

J

w U(x)dx

s Cosaqo ~ (x - X& s Coszq)o ~ (x - X&

2pro2 ~

~]

p U(z)dz = 2pr02
. ~ (itiRo)
s cos2(p;– A (Z-%)2 - s cos%po

with R. designating the residue at the point z=%.

However,

Wo (v - X)X()

‘o=dq%))‘pJ&go) ‘-irep(-)- A)(X() - d==
and

2r02 (P - A)x@@ 2L%# (v - Nxowo”
cz=- .

s Cos%o (~ - 7$ (~ - v)J~ ~2s (Xo - A)(xo - kl)~’

or

4W0 X() . “
cz =-— .—

‘fit+

(IV.39)
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The Cz is independent of ~ and of al; this generalizes a

result already found46 in section 3.2.2.2.

Let us now suppose that
the polar equation

r2 .

the arc BAB’ is an arc of an e~ipse with

a2~2

b2cos2cp+ a2sin2q

and let us, for simplification,assume that ~ = ~.

P(x) =
~a2b2

~2b2 + a2x2

whence

Cz =

=

R1 being

20a2b2
[1

~ 2inRl
s

the residue at the point z=i~.
a

In order to calculate this residue, one must know the value of U,

for z = i ~; this value is very easily obtained from the for-

mula (111.~~). One finds

()
2W0

Ui&._ Arc sin a sin e
a @ sin e

~

46In a general manner, one can obtain the Cz of a wing, the sur-

face of which is a portion of a cone bisecting the Mach cone, with the
vertex O and a rectilinear trailing edge by measurement of the electric
intensity in the tank. This result may be extended to the case where
the cone is placed in any arbitrary relation to the Mach cone of O
provided the trailing edge is rectilinear.
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On the other hand

S=abArctan a
b~ COS e

Thus, if one puts W. = -i (incidence)

c= = hi
Arc s@ a sin 0

p sin ElArc tanbp ~& ~
~ ‘“”40)

So far we have.visualized only the case where the flow on the plate
was conical due to the shape of the leading edge. To terminate these
few remarks about the flat plate of supersonic contour, we shall now
examine the case where the leading edge is curvilinear.

We shall start with the case of a polygonal leading edge (fig. 75).
The investigation is based on the following remark: if one superposes
at a point Al two elementary lifting flows, which completely bisect

the Mach cone of Al and the first of which has as bounding generatrices

Al A, AID1, so that w = -WO on (AAID1), while the second has as

bounding generatrices AIA, AIB1, so that w = W. on (~lB& ‘ne
obtains a resultant flow of such a type that, if AIYI and Alyl’ are

the sections of the Mach cone of Al in the plane Oxl~, w = O out-

side of the angle (BIAIDl), whereas w = -w. on that angle; on the

other hand, U.() outside of the angle (71’%%)” Besides, one can

easily verify that the resultant flow thus obtained is independent of
the generatrix A (provided, however, that the latter is outside of
(Y’AIY1)), and that, if one puts as usual

Cos eo = 1 Cos 01 = 1
~ tan% ptanq

the pressure coefficient is equal to

(
2W0 1 1.— -
p sin el

)
sin eo

on (YIAIB1)
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and to

2w~ ~

(

Arc Cos
Cos el - x 1 Arc Cos

Cos eo - x

~sin 01 1- x Cos el - sin Elo 1 - x Cos eo)

on (71‘A171)

x represents as usual a semi-infinite line inside of

We shall note the resultant flow

7?(Al,eo,eo - Q

The flow about
by superimposing on
generatrices OD1’

A

the
the
and

plate schematized in figure 75 is then obtained
conical flow of the vertex O and the bounding
OD1 the flows

with O.’, 01’, eo)
lines OA1’, A1’Bl’,

%)
+

and c(A1’,eo’,eo’ - 01’)

01 characterizingthe directions of the straight

OA1, AIB1.

If the leading edge is curvilinear (fig. 76), let us assume

[
A xl(t),~(t~ the point moving along this leading edge, u(t) the

angle between the tangent at the moving point and Oxl, and let us put

cos e(t) = 1
@ tanm(t)

Assuming M (xlJX2) to be the point where one desires to calculate the

pressure, one will put

x(t) =p~(t) -q

xl(t) - xl
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The flow will be obtained by subtractingthe

JL
C A(t),e(t),d@

(c)
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flow symbolized by

the flow around a plate of infinite aspect ratio, with the leading
OX2.

If MAl and ~ are, in OX1~, the two semigeneratricesof the

forecone at the point M, one has therefore as value of the pres-
coefficient at M by putting

d 1. — Arc Cos Cos e - x
dO sin 8 1-

= F(O,x)
x Cos e

2W0[J ‘2
Cp(M)=— l-~

1
F~(t),x(t~de (IV.41)

P m tl

At a point such as M’ (compare fig. 76) a slight modification of
the formula will be convenient; one must write

2W0 2W0

J

‘2
CP(M’) = -— F~(t),x(tjd(3

p sin f31 f3fl t-

One thus obtains the CP by a simple integral.

We shall point out a very remarkable result for the total Cz of

such a plate when the trailing edge is rectilinear. We shall show that
the Cz of such a plate depends only on the trailing edge; this fact

generalizes the result of the formula (IV.39). It suffices, of course,
to demonstrate the result in the case of a polygonal leading edge; thence
the general case is deduced by passing to the limit (fig. 77). According
to the formula (IV.39), the resultant of the normal forces due to the
flow

~(Al,eo,eo - %)
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acting cnthe region (R) is equal to that of the normal forces acting
on the triangle AIBID1 in the conical flow with the vertex O and

the bounding generatrices ODl, OD1’. The result stated above results

from this remark. Thus one verifies that on this plate the total Cz

is the same as if the direction of the flow had been reversed47.

4.1.2.2 - Infinitely thin rectangular wing

We shall now investigate the case of a rectangular wing, the pro-
file of which is an arc segment (fig. 78). In accordance with what was
said before, this arc segment will be defined by the angle jo(xl)

which is formed by the tangent and the chord at the
abscissa xl; if the wing has a geometric incidence

angle i, we put

J(xl) = Jo(XI.) - i

point with the
defined by the

(IV.42)

w must be equal to j(xl) on (R), and u must be zero outside of

(R).

+
We shall designate by Cp(M,a) the lifting elementary conical

flow, with the vertex M, which furnishes the value w = m on the two
faces of the quadrant M, xl, ~. With the notations of figure 58,

the formula (111.60) is then written

Cp=&Arccos(l-2@ tan q

CP=2!2
P

By an
induced to

argument analogous
define the desired

for O<ptanq<l

1

(IV.43)

for @tan(p>l

to the one of section 4.1.1.1.2 we are
flow by the symbolic notation

470ne finds here anew a remark made before byM. Snow (ref. 32) in
a particular case. Besides, this result may be extended without great
difficulties to any arbitrary plate of supersonic contour.
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J ~p(M,dj) +
J

~p(M,dj) - E p (xl]
AA’ BB‘

(IV.44)

The flow thus defined does satisfy the conditions concerning w;
however, one sees immediately that the flow gives a component u, zero
outside of (R) only in the case where the aspect ratio f3A is smaller
than or equal to 1. The limiting case @A = 1 corresponds to the dis-

position of the Mach cones given by figure 79. We shall use here48 the
hypothesis where f3Aal, and shall thenbe able to calculate the flow
by the formula (IV.44).

4.1.2.2.1. Study of the flow
t

~p(M,dj).- We shall use the
AA’

same notations as in section 4.1.1.1.3. According to equation (IV.43),

the pressure coefficient CP
at a point (F,fl) is written49

(o<xx<l)

if xx > F

481t is nbt impossible to investigatethe case where f3X< 1. One
must then superimpose on the flow given by (equation (IV.44)) other
conical flows, the vertices of which describe the two edges of the wing,
in order to establish pressure continuity without changing the w value
on the wing. This investigation is clearly more complicated than the
one we shall make. We shall not enter on It in order to limit ourselves
to the simplest results. Further on (section 4.1.2.3.2.) one will find
an application of this method in a special case.

49Strictly speaking, the slope of the wing should be noted jx(xx)
when one expresses it as a function of the reduced abscissa. We shall
omit the asterisk in order to simplify the notations.

.-—. . . . .. .. . . . ...-—--- —. —-..-. ... . ... . .. . .. .-,.--———-—. ------- --. -—----— .-. --—- ——-
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These two formulas may be written

[
CP=~j(9) - R (x’,~]

NACA TM 1354

with

stating

It
this coefficient defined by

that the function j(xx)

is then easy to calculate

(N.4.5)

is zero outside of the interval (0.1).

the local Cz of a section y’ with

J
1

CZ(Y’)‘ -2 ~ ‘%++%”

Remarking that

j (xx) = jo(x’) - i

and putting

J’
‘x

f(”) = JO(E)M ~(l)=q
o

one has

4i ~

J

1

‘z=—+
@ Pfl

R(x’,y’)dx’

Now
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2J-’-’@~x-’‘ccost-:2J’J(E)
=f(l-Y’)-+Y’)-

)2y’ ‘#

*-Y’

However,

Thus we put

J
if’ yX>l-~
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J

1
R(xx,yx)&xx = f(l - yx) - i(l -

Y
yx) + yx~i + JO(l - ~~ -

J’l-f~ k(yx,E)Ljo(E)
20

with

(Y-q. d~,d
Cz P

i + ~ PO(P) (IV.48)

One will find in figure 80 the curve giving the variation of k (yx,O)

and of k(yx,l/2).

We remark that

N1 I-yx
dyx k(yx,k)djo(E) =

o L’‘JO(’)J’-’‘(yx)’)dyx

J’
1

. 2
20

(1 - E)2UO(E)
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because

However

J
1

J
1

J
1

(.1 - E)2dJo(E) =2 (1-5) JO(5) =2 f(x)dx = 2~
o 0 0

putting

J’
1
f(x)dx = v

o

On the other hand

and

J’
11yxjo(l - J’ J’

1
y+yx . (1 -t)jo(t)dt = - tjo(t)dt = w

o 0 0

Consequently

(IV.49)

4.1.2.2.2 - Study of the thin rectangular wing in the case where

m“- As we have said in section 4.1.2.2, one can apply to this case
a method analogous to the one employed in section 4.1.1.1.4. The pressure
coefficient at a point of the wing situated on the surface X3 = +0 of

reduced coordinates t, T, can immediatelybe written

[
[( iJCp(t,n) =~ilo(t) - i - Rt,qo+ v) +R(t~vo - q)
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Consequently, the local Cz of the section q is obtained by the

formula

J’
1

cz(~) = -2 Cp(t,~)dt
o

1
Po(vo + v) + PO(90 - 7)

or

[(+) = &k TIo+ T@) + k(?o - T@ - g +:~o(~o+ ‘-o‘PO(VO -j

with the functions k and p. being defined by the equalities (IV.46)

and (IV.47). Finally, let us calculate the total Cz

and since

2~o=l+pA-1

one has, applying the results established at the end of the preceding
paragraph,

Cz=++
:(?+ a+‘“ - 1)%

because

k(t,O) = 2 ift>l
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(IV.50)

()1 dCz
Figure 81.gives the variation of – — , as a function of M,

2 di
for various values of A5°.

One may also plan the calculation of the drag of this wing. First
of all the local drag

f

1
GJli) = icz(q) + 2 Cp(t,q)jo(t)dt

o

or

(IV.51)

putting

JT(yx) = 1R(t,fi)jo(t)dt
yx

s1
. if(~) + jo(t - ~)jo(t)dt -

F

~OA. Bonney has already obtained this formula in the case where
Jo = o, p = O (rectangularflat plate); compare reference 33.

—.
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whence

The total drag Cx will be obtained by

jo(t)dt

taking the mean value

J
4 1 T(t).,Cx=iCz+~T02-—
PVC) ()

I. is easy to calculate the mean value of T(t) in the inter-
val (0.1), since

L’ Jdfl 1 jo(t -~)jo(t).t=O
yx

and

1M’
~_yx

J’
1

d~ djo(~) Arc sin

r

?

o 0
~jo(t)dt =

yx-t~ t

The calculations are analogous to those carried out a. the end of sec-
tion 4.1.1.1.3.
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consequently

Cx = :702+ iCz - ~_4i21- 1 +!~2

p2A P () 2pA po (IV.~Y)

We shall make an application to the case where the profile is
defined by

Jo(x) = Jo if O<xx<~

JO(X) = -Jo if ~<xx<l

{

jox if O<x<~

f(x) =

jo(l - x) if ~<x<l

In order to determine the local forces, one must calculate the functions

PO(F) and T(F); now
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The variation of PO(F) for a wing of reduced aspect ratio equal

to 2 is given by the figure 82.

On the other hand, ‘T(yx) can be expressed simply as a function of

k(yx,~). In fact

I
fijo

/“Arcsin~ jo(t)dt = ~

T

1
k(fl,O) - 2P

1
o)

if

if

These formulas one can establish immediately, remarking that

Finally

I
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(IV.55)

one will find the distribution of the drags over the
this type of reduced aspect ratio equal to 2.

In figure 83,
span for a wing of

One will remark that

and

This results from the equality previously demonstrated

4.1.2.2.3 - Effect of flaps and ailerons.- We shall begin with the
case of a flat plate; the formulas can easily be generalized in the case
where the wing profile is curved. The ailerons are, for instance, dis-
posed on the plate in the arrangement indicated by figure 84; 71 desig-

nates the deflection of the first aileron A’CDD’, 72 that of the

second B’EFF’.

+
For study of the flow one must utilize conical flows T(M,u) which

one can define in the following manner. In the region X3 > 0 the

—— .,.,.-,,. .,,,,.. , ,,,,,,., ,, , , ,,, ,.,, .,,- ..-,-.,, -,—- —--,, —-,,,.. .. .. .. .. . ..—
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flow

it is

NACA TM 1354

+
T(M,a) is identical with+the flow ?.,(M,u); in the region X3<0

identical with the flow C~(M,u). One can immediatelymake an
+–

interpretation of the flows T which gives account of the poss~ble

utilization in the effects of flaps and ailerons;51 the flow T(M,a)
is established when, after the plane ox~+ has been materialized, one

makes the quadrant Mxl% pivot around ~ by an angle

Hence the investigated flow may be obtained immediatelyby
of conical flows schematized in the following manner

*
Cp(A,-i) %p(B,-i) E(AB,+i)

I
+

3P(C,71) T(D,71) E(CD,-71)

1

-a (fig. s8).

superposition

(IV.56)

If such a scheme is to be valid without further complications,the
pressure coefficient outside of (R) must, of course, be zero. This
will be the case if the reduced aspect ratio of the plate and the flaps
is greater than, or equal to 1.

Let us apply these principles to the calculation of the local Cz
of a plate fo,rwhich the Mach cones of the points Al) B) c> D) E) F
are disposed as shown in figure 84. One may then place the origin at the
point A and immediately write the local CZ as a function of

Yx(yx =
p%); one will put AA’ = 1, CA’ = c, ~CD = 2, accordingto

51We have indicated this method in a note to the reports on the
proceedings of the Academy of Sciences in December 1947 (ref. 37). The
advantage of the flows T we indicate here has also been pointed out in
the article ofM. Snow, published at the same time as our note (ref. 32).
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the results obtained in sections 4.1.1.1.5 and 4.1.,2.2.1:

.ti~~,pc sin~+~’j- +

i~. sin ~+dv~

4
cz=—

P

.4
Cz (

–—i+ylc
P )

if yx<c

C<yx<l

l<yx< l-c

227

1- C<yx<c

l<yx<l+c

In figure 85, one will find the distribution of .2 over the span.

Besides, it will be possible to write in a general manner the local CZ

of any slender rectangular wing provided with flaps or ailerons.
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In fact, if one puts

[( ]f(u,c)=cl+~hcsin~ +uArgch~
Iul

if -C<u<c

f(u,c) = o if U+c<o

1

(IV.58)

f(u,c) = 2C ifu-c>O

one has with the customary notations

that

2Y~
[( 1—k~o+’’l -c)- f(’o-z+”cP

272
[(

—kqO
P I- ~~1 -c, - ‘(~o - z - ~’c)

The total Cz may be easily calculated.

r2~0 ~
/’(
c

k U,l - c)du = k U,l - c)du +

-1-

(N.59)

We remark for this purpose ‘

r2-’70k(u,l - c)du

3 C2 + 2C(270 - c)
‘2

The mean value of f is very easily obtained whence

(71 + 72) p~l - L C2

()

~ .bl-.&_ 4+4+2
( )

(IV.60)z
P 2pA p2~ &’A 2

One also sees that the calculation of the moments does not present
any difficulties.

11
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4.1.2.3 - A few remarks regarding the study

of the effect of sweepback
..,. ..

We cannot here--developa theory of the sweptback wing. We there-
fore shall content ourselves with a few remarks.

4.1.2.3.1 - Study of the sweptback wing with “supersonic leadin~
ed~e’n P cot 7>1), compare figure 6.- This investigationdoes not
present any difficulty in the case where the reduced aspect ratio ~0

is greater than 1 We reassume the notations of sec-
1- Cos e“

tion 4.1.1.2.1; let j(g) be the angle defining the infinitely slender
refile of the wing supposed to ‘beconstant over the span

Fj(~) =jO(g) - ~i ; the flow will be obtained by superimposingas before:

(1) Conical flows bisecting the Mach cone, centered on 00’.

(2) Lifting flows centered on AA’ and BB’.

(c) Finally flows about the wing of infinite span with a fin with
the ssme profiles as the wing profile and leading edges which
coincide with OA and OB.

In order to simplify the investigation,we shall assume that the
Mach cones of the points O, A, B do not interfere with the wing;
this will permit one to study separately the “head effect” (conical flows
centered on 00’) and the “end effect” (conical flows centered on AA’
or BB’). The “head effect” can be investigated
to the formulas of section 4.1.1.2.1.

The pressure coefficient on the surface ‘3

immediately,according

= +0 is written

Cp= 1
[
2j(x) -

p sin e 12Q(x,~,13)

Q being defined by the formula (IV.21) in which a,(g) has been replaced
by j(~).



The local-lift coefficient is written

The mean value of cz(~) in the region O < y’ < 1 is equal to
1- Cos 0

with

J
1

1(0) = Arc Cos sin El

o - “ - “:Os ‘)2

1

[

1+ 1 [)3(--
‘2 sine

]
0 co’ ‘e + ; Cos’e

cos e sin (3 2

& .

(IV.61)
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Likewise,the local drag is written

()
x 47 4

c~y = G(~, O)
psine-f3sin El

under the conditionthat in the formula defining

j(\). The mean value of this drag in the region

u-F
G, (formula(Iv.2’j)),a(t) is replacedby

O<~<a 1 . is written
1 - Cos u

x- E

4(i2 +702) 8(1 - cos e)

psine - pfisine
I(e)~’ j(x)ti( (x - ~)dj(~) =

4(i2+T02) 4(1 - cos e) ~(e)i2
f3sine - pfisine

One may study in the same manner the “end effect”by compoundingthe flows
section3.2.3.2. Taking the reduced coordinates,referredto the point A, one

+ 2yxcos e)

(IV.63)

investigatedin
has hnnediately
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R being the function definedby equation (IV.54). Consequently

1354

CJF) =

the mean value of c= in the interval O<?< 1 is written
l+cose

~z = p ~in e ‘@sinE1

In the same manner,
of the local drag

Cx(@) = icz(fl) +

one obtains without any difficulty the value

4 4
~ sin (3’02 - ~ sin f3

T[fi(l + COS e]

and its mean value in the interval O < ~ < ~ + ~os ~

3i2 4 T2
p sin El‘psine JO

One may summarize these results in the following manner:
sider a wing of an aspect ratio equal to 2V0 (fig. 86); the

of this wing is written

we con-
total Cz

[

4i ~

1

I@)(l - Cos e) 1 + 3i 1.—
Cz ‘p sin 13qo 1

+
m - cos e qof3sin el+cOsO

4i V. sin20 - 2
+

Top sin e

or

[

Cz= 4i 1-
p sin e ( 1

~l+cOse

2P

[

1

1

+ 41(e)

@sinOqol+cOse fi

1+ 41(e) + 2~

[

1

1

+ 41(e)
11 pqosinel+cose fi

(IV.64)
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Likewise, for the

Cx =

total drag

1-
1 - Cos e

iz +

-1

[ 1

4(i2 + ~02) ~. sin2e - 2~i2 4
~02 (1+ C:s e)l-lo~ sin El‘@sine + f3sin e~o sin20

or

[(4i2 ~ 1 +U!Q
]

4i02
Cx = -—

$ sin e 4:ol+cose fi ‘@sine
(IV.65)

1

These formulas remain applicable as long as
~o>l-;osg”

4.1.2.3.2 - The study of the sweptback wing with a supersonic leading
.

edge when VO< 1 - C~S 9, or with a subsonic leading edge, presents more

serious difficulties.-A complete investigationof this kind would lead
us too far. We shall content ourselves with treating a simple exsmple
which will show how to proceed in order to surmount the difficulties.

We attain this aim by introducing conical flows which we shall
denote

S(VOJUO)

defined in the plane Z by the following boundary conditions (fig. 87):

(1)

(2)

(3)

Uo is a

one puts

on (CO))
u .V .W . 0.

On OA, w=O.

On the upper edge of OC, u = Uo.

On the lower edge of 02, u = -uo.

given constant, the

as usual

point C is the image of the number Z = .a2;

to =
2a2

l+a4
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The methods of chapter III permit one to write very easily the
function U(Z) the real part of which gives the component u of such
a flow; if one puts

Z=S2

one has

[ 1

lUO log s - ia 1 + iasu(z) = - — (IV.66)
II s + ia 1 - ias

One verifies readily that this flow satisfies all boundary conditions.
Besides, if one puts

t= 2s2
1+s4

one has on OA

U.f

~MccOsFfit~(~&l ‘fi+hc ‘in=
(IV.67)

These flows will enable us to make the pressure discontinuities
appearing outside of the wing disappear, without modification of the
boundary conditions on the wing itself.

Let us take for
cated in figure 88.
usual

instance the case of a plate of the
With 7 being the sweepback angle,

plan form indi-
one will put as

cotan 7 = 1
Cos e

One assumes that the Mach cone A does not intersect the seg-
ment 00’, but that the Mach cone of O does intersect the segment AA’
at the point Mo. According to what was said above, one will obtain a

flow which satisfies the boundary conditions on the wing portion ~< O
by superimposinga conical flow of the vertex O and bounding genera-
trices OA, OB, a flow of the vertex A and bounding genera-
trices AA’, AO, and by subtractingthe flow about a plate of infinite
span with AO as leading edge; however, the region M@@ ‘ then is a



NACA TM 1354 233

zone of discontinuity for the pressure. If M&l represents the other

generatrix of the Mach cone of ~ in xlO~, the pressures obtained

in the region M&’P1 will thus be erroneous.

One will obtain the desired result by superimposing
flow a flow schematizedby

In this formula

Uo..

if M is at MO)

The pressure
following formula

70
to =

g+?locose

+ 270 Cos e)
J

on the preceding

q-j=l, E= To(l-coS e).

coefficient~2 in the region MoA’Pl is given by the

(~ is negative):

520ne will find in appendix No. 6 the explicit calculation of this
pressure coefficient and a few important brief remarks regarding certain
peculiaritiesoccurring in analogous problems.



One verifies in particular that Cp becomes zero for # = -~o, that is, on the edge AA .

One can see that this formula is rather complicated. We shall content ourselveswith examining
the case where El= O. The formula then presents an indeterminateform which may, however, easily be
eliminatedby developingthe terms in brackets up to the first order inclusively (in e). It is con-
venient to perform an integrationby parts before making this development.

The result then is considerablysimpler; one finds

ki
Cp=-z hc sin

.1

-’-1
(IV.69)

E!
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~ The integral of the second term represents the “end effect” of theI)1,, wing AA’/ while the first term represents stiply the pressure coeffi-

1 cient in the conical flow with the vertex 053.
1...[

As an application, we shall calculate the total C= of this wing
,

~3Had one wanted to study directly the case where 13= O by appli-
cation of the preceding method, one would have been led to write

r

L

However, the integral of the second term has no meaning since the dif-

ferential element is in ~-3/2. In order to eliminate this difficulty,
one must utilize the conception: “finite part”
duced into the analysis by M. Hadsmard (compare

J
x-2(70+yx)

o “Csinm

1-

of an integral intro---
ref. 7). One has in fact

e{-”=

–1

This justifies once more the interest in the motion of the “finite” part
of an integral which permits a very easy performance of limiting.process
which may be delicate.
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if one puts
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2(V0 + yx) = z

with F(z,x,~) designating the quantity under the sign r in the

formtia (IV.69). The double integral may be
(compare the end of section 4.1.1.2.1)

lJ )

calculated immediately

As’to the
integrations

triple integral, one may write it changing the order of

z -x-

Zg + 2Tlo(x2~0~) Kdz

In order to calculate the last integral, one puts

x- : - z ‘t2

It is then written

J
co

tz(x - ~) - (X + 270)(1 + t2) t2dt
2

27.(1 + tz) + tp~
o (1 + t2)2
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/
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and may be calculated rapidly by residues. It has the value

&- - ~(f + ho) - ;

Therefore, it suffices for
utilize the following results

calculating the triple integral to

The triple integral thus has the value

J--( )loqo +(1 + 2qo)2
;2701+~

8

which leads

c= =

to the following value

L

~

1 J 1 + 27.)2
fiArc tan--

r270
3

for the desired Cz

239

r 1

“ (3 + 10~0) ~ + (~ + 270)2Arc tan 1 8
&l. 3

—- -

r
3

(IV.70)
270

One will find in figure 89 the variation of Cz as a function
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As an application, we have traced in figure 90 the variation of
dc~

as a function of the Mach number for plates of the plan form
r

defined by figure 86. The angle of sweepback is 45°; the geometric
aspect ratios are, respectively, equal to 1, 2, and 8. The points sit-

uated on the abscissa M = @ are obtained exactly ~ormula (IV.70~.
The parts traced in solid lines are given by the formula (IV.64). The
dotted parts are obtained by interpolation. In order to obtain them in
full rigor, one would have to calculate the Cz from the formula (IV.68).

4.1.2.4 - The Uniformly Lifting Segments

The role played by the “horseshoe vortex” or “unifomly lifting
se~ent” in the subsonic wing theory M well-known; the linear theory
of Prandtl is based on this conception. We shall show how easy it is
to obtain the corresponding supersonic flow, and shall indicate a few
possible applications.

According to section 3.2.3.1, the conical flow

L@
U(Z)=~+i;log z

1+Z2

for which

(IV.71)

represents a flow for which u has the value zero in the plane X3 = O

except on the quadrant Oxl, O% where u assumes the values t%.

Let us then apply the results of section 1.3. The homogeneous flow of
zero order, defined by the complex potential

O(Z) = -i ‘flog z
1+Z2

(Iv.72)

may be considered as a derivative of the flow in the direction ox~ of

the conical flow defined by equation (IV.71), and consequently defines
the flow corresponding to the uniformly lifting semi-infiniteline o% J
with the uniform lift being equsl to PO. The velocity field inside of

the Mach cone r of O is obtained by application of the formulas (1.29)
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PO pa+l
u

[1

~i Z2-1=—
21rx~~2 - ~ Z2+1

. ..

-5p2+’’[i:z2A‘–2fix1p2-l

Outside of (r) the velocities are zero.

If one calculates the velocity field in a plane xl = Xlo Xlo

)

(
being very large , one has therefore

P
f3r

-q

Consequently

‘O sin e Po Cos eu-o v. -—— w——
2Tt r 2fi r .

that is, the classical vortex field.

In order to obtain the flow correspondingto the uniformly lifting
segment, one visualizes the superposition of two homogeneous flows of
this type. Let, for instance, Al and ~ be two points of O%, and

z~ and ~ the values of the variable Z if one takes, respectively,

Al and ~ as origin. The desired flow is determined by the complex

potentials

log ‘2 - log ‘1

l+& 1 + Z12

54’I’heformulas here obtained have been obtained by another method
by Schlichting (ref. 34).
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This could form the basis of a theory of straight wings (without sweep-
back) analogous to the Prandtl theory for subsonic flows. However, one
has not succeeded in linking the local lift with the general inclination
of the profile.

On the other hand, one can apply these formulas for the study, at
least in an approximate manner, of the velocity field behind a straight
wing when the distribution of the circulations is known. This seems to
us to be a method which should permit a first investigation of the inter-

action of a wing and the controls5s.

Likewise, it is very easy to define, following the same principle,
the flows corresponding to two uniformly lifting semi-infinite

lines O Al, 0LL2 (compare fig. 91). If ~coty=~ we are
Cos e’

dealing with a homogeneous flow of zero order, defined by the complex
potential

ipo
@(z) =-=logl+z2-2z Cose (IV.73)

1+Z2+2ZCOS13

This results immediately from the formula (111.47). Likewise does the
semi-infinite line o Al when uniformly loaded, give rise to the flow

defined by

ipo
o(z) .-=log z

l+Z* - 2Z cos e

In each of these cases, one can immediatelywrite the velocity field,
applying the formulas (1.29).

This permits one to define the flow about a lifting line such as
AIO~ which is uniformly loaded. As in the case of a straight wing, one

may utilize these flows for the study of the velocity field behind a
sweptback wing.

~%%e investigationmade in section 4.1.2.2 for the rectangular wing
permits in fact calculation of the forces acting on the wing but does not
in any case permit the study of the field behind the wing.

.—. —-. .... . . . . ... . . ....... . . . . .,, ,,, ,..... , ,,,,,, , , ,,
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. 4.2 - Study of Fuselages

4.2.1 - Generalities Concerning the Flows Past Bodies

of Revolution of Fuselage Shape

By composition of conical flows, we shall obtain a new method for
the investigationof flows past bodies of revolution. The results
relating to these flows have formed the subject of numerous reports
(refs. 35, 36, 5); however, the methods we shall describe seemto us to
permit certain generalizations. The given parsmeter in this problem is
the value of the radial velocity Vr along a meridian line. This veloc-

%o ‘(XJity is equal to ~1 is the function defining the meridian

line in a plane r, xl. However, we shall see that ‘r(xl~r) ‘Sa

1 for a small r.function which is, when xl is fixed, of the order ~~

The boundary condition may also be written

rvr = r dr 1 dS—. ——
dxl 21-tdxl

with S(xl) = fir2

abscissa Xl. If

finite value. In
flow will have to

designating the area of the fuselage section of the

one makes r tend toward zero, rvr will maintain a

a precise manner, we shall state that the investigated
verify the followlng boundary condition

lim 1 dSrvr=—— (IV.74)
r-o 211dq

4.2.2 - Investigationof a Particular Case

Let us consider the flow around a cone of revolution; the formu-
las V(Z), W(Z), U(Z) are functions of Z which admit inside of
IZI =1 only the point Z = O as a singularity. Thus they may be con-
tinued anal~ically to the interior of the circle (C), image of the
conical obstacle in the plane Z, under the condition of excluding the
origin O from this circle.

After this statement we shall determine the flow around a body of
revolution the meridian line of which has the simple form given by fig-
ure $2. (30 naturally is an infinitely small angle. A first idea for
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obtaining such a flow consists in subtracting
of revolution of the vertex O and the angle

vertex A. Let us put

NACA TM 1354

,
from a flow around a cone
90 a similar flow of

2.1+P2 xl-a 1 + PIP
@r 2p @ = 2P1

The radial velocity of the resultant flow is

+?!gp-(’-q

Let us assume that P and PI are infinitely small which is the

case for points M which are sufficiently distant from A

In order to obtain the desired flow, it will therefore be necessary
(which is, besides, in
add a homogeneous flow
complex potential

accordance with the theorem of section 1.1.3) to
of zero order with the vertex A defined by the

@(Zl) = -aeo210g Z1

with Z1 designating the complex variable Z for a flow with the ver-

tex A (
in particular z~ = Pi).

The resultant flow has for xl > a the radial velocity (compare

formula (1.29))

or
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The obtained radial velocity is therefore not identically zero along
the conical obstacle, but it is very small when xl is not too close to

a since P, PI and r are infinitely small quantities. For the rest,

the equality (IV.7h) is satisfied for any value xl > a. In first

approximation,we regard the flow obtained as satisfying the conditions
posed, although of course the value of Vr is not negligible if xl is

close to a.

Let us now suppose that we would want to study the flow around a
body of revolution which has a meridian line schematizedby figure 93.
One is led to visualize the flow as a resultant of the previously defined
flow and a conical flow of revolution of vertex A relative to the
angle Ell. At a point M situated on the meridian line (when the

abscissa of M is
velocity

‘r -

where

r.

distinctly larger than a), one has as the radial

(2xlxl-aeoT- r
)

-*+W
r r

()xl - a 01 + aeo = r(a) + (xl - a)Ol

If one puts

r(a) = aeo

r(a) designates the radius of the abscissa section xl = a.

Hence

vr.!d2.VQ.el-W
r r

Since one must have = Ell,one sees that one must, moreover, add‘r
the homogeneous flow of vertex A of complex potential

O(Z) = r(a)el log Z
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Finally, the case investigated is obtained:

(1) By adding a conical flowof the vertex O relative to the
angle eo.

(2) By adding a conical flowof the vertex A relative to the
angle el.

(3) By subtracting a conical flow of the vertex A relative to
the angle eo.

(4) By adding a homogeneous flowof zero order of complex potential

where

N(a)

4.2.3 -

r(a)Af3(a)logZ

r(a) is the value of the radius for xl =a and

is the discontinuity of the angle e for xl = a.

Approximate Study of a Body of Revolution

of Fuselage Shape

The application of the above said permits to obtain, in an approxi-
mate manner, the flow about a fuselage-shapedbody the meridian line of
which is polygonal and, by hmiting process, the flow about a body of
revolution the meridian line of which possesses a continuous tangent.

If one assumes first alJ a2, . . . an . . ., as the abscissas of

the vertices of the polygonal line which constitutes the meridian, the
desired flow will arise from the superposition:

(1) Of a succession of conical flows which cause an axial velocity
Of the form (formula (11.23))

en210g
Pn

pn2 + 1

where

l+pn2 xl-an

2pn = @-

with en being the value of e for ~ < xl < an+l;



(2) Of a succession of homogeneous flows which cause an axial
velocity of the form (formula (1.29))

rn “AGn 1 + Pnp

xl

where

‘n ()=ran

-aI-ll-Pnp

Aen =A(en) = en - en-l

24-7

However, Pn will be very small except in the inmediate neighborhood of

an, consequently one may expect the reduced axial velocity to be written

-z ‘n Aen

xl - an

An the abscissa an ofwith the sums
x

extending to all points

which is smaller than xl - @. The case of a meridian with a continuous

tangent is obtained by performing the limiting process in the preceding
expression which leads to

xl-~ Jo

However,

One obtains

(m*75)

D —



248

This expression is
is, besides, equivalent
before.

NACA TM 1354

exactly the one given by Laitone (ref. ~); it
to those suggested by the other authors named

However, the argument just produced is somewhat summary due to the
difficulties arising in the neighborhood of the points al, a2, . . .

In the following paragraph, we shall justify the aforesaid, in
~a~~c~ar the important formula (IV.7~).

4.2.4 - Justification of the Method

The question is to calculate the radial and axial velocities
according to the rigorous formulas, and to take the possible simplifi-
cations into account only in the final result. The radial velocity com-
prises two terms, the first of which results from the composition of the
homogeneous flows of zero order; the differential element of the corre-
sponding integral is

()g+ p+~1 + ‘2 r(~)&3(fj) . ~ 1 + ‘2(5)r(~)A(3(~)
2 X1-E Pl_p2 rl - P2(L)

if one assumes e(~) differentiable since

2P2d~
= pr dp

1- (32

hence the contribution due to these flows to the radial velocity

P.

the

J
xl-p

~
J’

1

2~
r(~)O’(~)d~ + r(~)e’(~)dp

P.

being the value of p(~) for 5 = O.

Likewise, the composition of the conical flow causes an integral
differential element of which is written
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Hence the desired integral

Thus the velocity is written

1 s‘I-pr d2s(~) d~ + &

f
1d2s(E) dp

‘r=— 23rr
0

d~2
Po

~E2

d2S(~)The last integral is bounded by the upper boundary of ~ and con-
d~d

sequently the condition (IV.74) is thus verified. The calculation of u
is made by a quite analogous method and leads to the formula

/

xl-pr

1=__
‘IT

o

Now it is quite
pared to the first.

obvious that this last integral is negligible com-
Thus the formula (IV.75) is established. It furnishes

the following approximation for the pressure coefficient

(IV.76)
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Remark.

In chapter II, we had utilized the formula (1.10) for writing the
pressure coefficient. This formula would lead to write here

J
xl-@

CP=2
d2S d~ _ r’2(x)

‘lo
~xl-~

One will compare this formula with the one given in reference 36.

Nevertheless, the analysis just made does not guarantee that the term r’2
represents all terms of the second order; therefore, besides, in accord-
ance with Laitone, we shall content ourselves with the formula (IV.76).

4.2.’j - Generalizations

The method indicated above has the advantage not only of giving a
new demonstration of the formulas relative to flows of revolution, but
also of furnishing a more general method which lends itself to applica-
tion to numerous fuselage problems.

Let us take, for instance, the case of fuselages of revolution the
axis of which is slightly reclined toward the wind direction. One may
reassume the preceding method, starting out from the flow about a cone
of revolution inclined toward the wind (formulas (11.24) and (11.25)).
The desired flow is obtained by suitable superposition of those conical
flows and of homogeneous flows of zero order which one deduces from them
by differentiatingthese flows in the direction of the axis of the fuse-
lage (compare section 1.3).

It is permissible to assume that this method will also permit the
study of fuselages which are not bodies of revolution but the cross sec-
tion of which remains, for instance, homothetic. Certain difficulties
make their appearance, but do not seem insurmountable. In entering on
the investigationof fuselages by the method of conical flows, we aimed
only at indicating the principle of a new method. We reserve the devel-
opment for a later report56.

56Compare in appendix No. 7 the development of this idea.
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4.3 - First InvestigationRegarding the Conical
F“t

251

i,$’ Flows Past a Flat Dihedral. Applications
7)
1,~

; to the Fins and Control Surfaces.

We have already indicated in the course of this chapter that there
exist other conical flows than the flows with infinitesimalcone angles
or the flows flattened in one direction. In this last paragraph, we
shall give a few exsmples of flows past a flat dihedral. These flows
may be utilized either for the study of the effect of dihedral on a
lifting wing or for the study of the fins and control surfaces. We can
here not consider developing the complete theory of these flows. We
shall content ourselves with indicating a few exsmples.

4.3.1- Effect of Dihedral on a Wing Completely

Bisecting the Mach Cone

Let us consider a A wing having dihedral; this wing is infinitely
flattened into two planes which intersect in Oxl. For simplification,

we shall assume that the plane ox~x~ is a plane of symmetry, the wing

completely bisecting the Mach cone; upper and lower sides are therefore
“independents.“ This signifies that in the plane Z the region inside
of (CO) is divided into two domains (fig. %). The wing portion inside

of the Mach cone (r) is represented by two radii OD, OD’ which form
with OX the angles eo and n - Elo. The bounding generatrices of the

A have as images the points E and E’ of the argument o~ and rc- e~

on the circle. One will assume, in order to better establish the ideas,

that 0< f30<131 <~.

The boundary conditions which permit determination
functions U(Z), V(Z), W(Z) in the region ODEE’D’O

(1) On the arc EE’ U.v

(2) On the arc ED and on the segment OD w Cos

(3) On the arc E’D’ and on the
se@nent OD‘

We shall treat here the elementary
considered constant. The condition

w Cos

of the unknown
are:

.W.o

80 - v sin 00 =

eo+vsineo=

case; consequently, u will be

a

a
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w Cos eo- vsin OO=a

entails that on OD

-[

Rz~cOSeo- ~z

1

z~sineo ‘0
dZ

or also

R
-[ ) ( -i)cos’izq=o

Z+~sin Oo+i Z

whence

The normal derivative of u is zero along OD.

One would have an analogous result on the segment OD’.

On the other hand, on ED

[

T@! COS80- dz

1

z~sineo ‘0
— dZ

which entails also

-[ 1
TZ~=O

dZ

Consequently, u maintains a constant value on ED

Besides, it is easy to calculate this value owing to
las (111.46);one finds

and E’D’.

the formu-

In order to achieve the calculation of U(Z) it is then necessary
to carry out the corformal transformation

.— I
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~ . .j-l--~m

where

m. I(
fi- 2(30

The domain investigated is represented on a
(compare fig. 95). The homologous point of

~1 -d% - eo)
lc - 2eo

Now the function U(T) can be written
of the results of section 3.2.2.1

semicircle of the plane T
E has as argument

immediately on the strength

( )(-iql ~ icpl
U(T) = -ia log

T+e - Te )

( %)
(IV.77)

@ sin e. -
(l+Te )(

-iql eicpl
-T )

and according to formula (111.>3) one may write the value of the pressure
coefficient on the wing portion inside of (r)

Cp = 4a sin cpl

(
Arc sin

7rf3sin el - eo)
-

putting

x=ptanu

In order to link Ell to the angle ~ defining the bounding gen-

eratrices of the cone, one will remark that

1
‘1 =~o+eo with Cos To =

p tan%

It is easy to obtain the component of the normal forces on the upper
surface of each half wing; one will express this component by the dimen-
sionless coefficient
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JX0
c~=- 1 Cp dx Xo =~tan~

f3tan~ o

In order to calculate c~ one will use the plane T

cN=- 1

~ 1

2(1 - T2) ~T

2P tan ~ L CP
(1 + T2)2—

2.

s_ [ 1

~U(T) 1 - ‘2 dT
ptan~ ~

(1 + T2)2

2

[ 1U(T) 1 - ‘2 dT
‘ptan~E ~

(1 + T2)2

with L denoting the contour e’d’de in

The calculation of this integral has
tion 3.2.2.2. Hence

J

the plane T (fig. 95).

already been performed in sec-

Remarks.

(1)
over the
electric

cN=- 2cfJ 1 2

f3 tan% G cos

2a Cos(vo + eo)
. -—

P Cos Cpl

(sin Ell- 80)

sin Cpl

(sin t31- 90)
(IV.78)

It is obvious that the general case where a would be variable
span can be investigatedwithout difficulty with the aid of
analogies.

The treatment of the case where the cone representing a dihedral(2)
is entirely inside the Mach cone is more difficult. The domain where the
functions U(Z), V(Z), W(Z) must be studied is annular, and in contrast
to what occurred in section 3.1, the conformal representation of such a
domain on a circular annulus does not seem to follow immediately.
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(3) It is Possible to Study the effect Of dihedral on a rectangular
or on a sweptback wing by “composition”using the methods developed in
section 4.1.

,.

4.3.2 “- Fin at the Wing Tip

L& us consider, for instance, the edge AA’ of a rectangular wing
of large aspect ratio; we shall assume the fin to be formed by a trian-
gular plate ABB’ (fig. 96) whichwe shall suppose, to start with, as
lined up with the wind. We aim to calculate the effect of this fin on
the flow.

4.3.2.1 - It is alnost evident that if the semi-infinite

lines AB, AB’ are outside of the Mach cone of A,

the fin suppresses the end effect of AA’

‘~’ Let us consider, for instance, the case where the wing is reduced to
j a lifting plate in the plane Z; the boundary conditions for the quad-

rant

They
nite

OAB read, in fact, as follows:

w = Wo, on OA and AB

v = 0, on OB

are the same that would be valld for a flow around a plate of infi-
span placed at a certain incidence with respect to the wind.

In contrast, the perturbation flow in the quadrant OA’B is iden-
tically zero. This result applies, by the way, likewise to the “thick-
ness effect.” We deal, therefore, not witlia new mathematical problem,
but simply with a remark which can be utilized in certain technical
problems.

If now the fin is itself a lifting surface, that is, if v assumes
on the fin a constant value different from zero, the case is particularly
simple and one may conclude immediatelythat it is the one where the
bounding generatrices of the fin are symmetricalwith respect to the
plane xlO~. In fact, if the fin were by itself, it would give rise to

a flow of such a type that the component w would be zero in the
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plane Oxl~.

case where the
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Thus it suffices to add this flow to the one found in the

fin is lined up with the wind57.

4.3.2.2 - The case where the bounding Reneratrices

of the fin are inside of the Mach cone

gives rise to a new problem

If C and C’ are the images of these generatrices in the plane Z
(fig. 97), we shall suppose, for instance, that C and C’ are symmet-
rical with respect to O, and shall study the effect of the fin on an
elementary symmetrical problem. The boundary conditions are:

W.w o on the upper edge of OA and on the arc ~

W=-w o on the lower edge of OA and on the arc ~’

V.o on the two edges of OC and of OC’

For reasons of symmetry one also has w = O on OA’.

We shall discuss the function Z ~
(
the function F(Z) introduced

in section 3.1.1 is proportional to
)

ZE. The boundary conditions
dZ

inform us that Z ~ is real on the contour ABA’OCOA. On the other
dZ

hand, according to the results obtained in chapter 3, B is a simple
pole for this function while C is a critical point of the order p + 1/2,
p being an integer. Reassuming the arguments raised in section 3.1, one
sees that the simplest (in the sense of the principle of minimum singu-
larities) of the functions which satisfy these conditions is written

z dU(l) Z2
— =-.
dZ ;2

(IV.79)

(z +1) EZ2+ C2)(1+ c2zqp2

We denote by the index (1) the corresponding solution.

77For reasons of simplification,we have visualized the case where
the bounding generatrices of the cone were normal to the wind; it is easy
to treat in the same manner the case where this condition is not satisfied.
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Wo
Besides, u is zero on the arc A’B, and u = - ~ on the arc AB.

.= Consequently, one has, if one takes as the initial determination for the
radical ‘thepositive one on the upper edge of OA, according to equa-
tion (111.46)

1=’? b’)
The integration of equation (IV.79) does not present any difficulty;
naturally, the integration constant must be chosen in such a manner that
u= Ofor Z=-1. One finds

w.i

[

“( - Z’)(1 - C2) - z’ + c’ 1 + C’2Z’u(l)(z) .Klog ‘-1
(Z2 + 1)(1 + C2) !

(IV.80)

with the logarithm having the value ifi for Z = 1.

The explicit calculation of W(l)(Z) and V(l)(Z) may be made by
the elllptic functions. One must, in fact, exsmine whether all boundary
conditions are satisfactorilyverified. Now

dv(l) (W(J1 - c’)
—=+
dZ plc

[z’ + C2)(; + C’z’jl1/’

Consequently, if one puts

z = ‘c dv2)
the investigatedregion of the plane Z has as
rectangle (compare section 3.1.1.8 and fig. 34)

image in the plane T a
and one obtains

—= —–=+y’ -’)dv(l) dV(l) dZ
d~ dZ dT

v(l) - iwql - /) -r
pfi (-i?)

.—— — .....-—.- ,.. , , , . , , ,,.,,. ....— . . ... . .... .——.
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I

The integration constant is chosen in such a manner that v = O on the

()
(l)(Z), V(l)(Z), W(l)(Z) thus does notcircle co . The solution U

satisfy the boundary conditions posed; it corresponds to the case where
the fin itself is inclined toward the wind direction with
v on the fin being equal to

~(l) .Uq
pm

On the other hand, one finds for w(l)(z)

dW(l) d@) dz ( 2,Wol-c ~ + c2sn2T
— .— —..
dr dZ dT pll ~ _ c2sn2T

W(l) is, therefore, expressed as a function of T by an
gral of the third kind.

the value of

(IV.81)

elliptic mte-

After having thus defined the solution u(l)(z), v(l)(z), w(l)(z)
it is easy to obtain the one which is relative to the posed boundary

problem; it suffices to add a solution U(2)(Z), V(2)(Z), W(2)(Z) so
that

(~) U(2) =V(2) =W(2) =0, on (CO)

(2) W(2) = O, on OA and OA’

(3) V(2) = -v(l), on the two edges of the cut cc‘

This flow is, except for the notations, the one which has been
studied in section 3.1.1.7.

tion U(2)(Z) is written

In particular, the value of the func-

One obtains thus the following general result: if one must on the
fin have v = Vo, the value of the function U(Z) is given by the formula
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1Iij
( u(z) = ~log

[

i(l - z*)(1 - c*) -

1

z* i-Cq(l + C2Z2)

(1 + z% + C*)
+

t>=- ,.
j

j
2C2 W()

(1 )[

(—1 )- c2 K’ 1- Z2)
),f ‘Vo + 2f31f

P(1 + C2)E 1 - c:
‘1

Z2 + C2)(1 + C2Z2)
+C

(rV.83)

One will see that in the case where Vo+o and C2+1, one finds,
at the limit, the result foreseen in the case where the fin bisects the
~ch cone (4.3.2.1); and that, if c+O, one falls back on the solution
Of section 3.2.2.1 (equation (111.57)). One may then calculate the pres-
sure coefficient on the wing (Z real and positive), and finds

putting

2Px. Y= *C
1+P2 l+C*

4.3.3 - Crossed Wings

To terminate these few remarks regarding the calculation of the
effects of dihedral, we shall give a few indications regarding the case
of crossed wings.

Let us consider a cone flattened in two directions of the
planes Oxl~, ox~x3. The function w on the two faces of the tri-

angle OAA‘ and the function v on the two faces of the triangle OBB‘
are known.

Let us suppose that OB and OB’ are symmetricalwith respect to
Oxl@, and that OA and OA’ are symmetricalwith respect to ox~x3;

under these conditions the flow around the crossed wing is obtained in a
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particularly simple manner. It suffices to superimpose the flow which
is infinitely flattened into the plane ox~x3 and realizes the desired

values for v, and the flow which is infinitely flattened into the
plane Oxlq and realizes the desired values for w. In fact, due to

the symmetry, the first flow gives a value of zero for w in the
plane Oxlq, and the second a value of zero for v in the plane 0X1X5.

The case where the crossed wing does not admit two planes of sym-
metry csmnot be treated as simply in the general case. Particularly,
the case where the bounding generatrices are all entirely inside the
Mach cone leads doubtlessly to analytical solutions which can be explic-
itly expressed only with difficulty, even in the elementary case. How-
ever, as in all these problems concerning the effect of dihedral, the
solution is facilitated by the utilization of conformal representations.
Although they are hard to obtain in explicit analytical form, they may
be determined accurately by judicious utilization of the general method
of electric analogies.
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APPENDIX

No. 1 - Theorem of Existence and Singularities

of the Solution for a Flow Infinitely

Flattened in One Direction

1. Generalities.- The source”methodwhich should be called more
exactly the “method of the fundamental solution of Hadsmard” permits the
general investigation of the flows about obstacles which are infinitely
flattened in one direction. Several authors (compare refs. 1, 2, 3,
and 4 of the references for the appendix) have independently investigated
this problem. We ourselves have studied this question in collaboration
with M. R. Bader. Since the corresponding report (ref. 5) has not been
officially published, we shall give here the results which seem to us
original with regard to the investigations quoted. With the same nota-
tio~s as in the ~etix,the problem
manner (see fig. 1) :

Find a solution V(Xl,X2,x3)

and the boundary conditions:

(1) at infinity upstream:

(2) on (S), projection on

~y be fo&n.iLatedin the

satisfying the equation

%cp %p o-— -— =
3X22 ax52

= o, grad>~ = O;

ox~x2 of the obstacle:

following

~ = k+(X~,~)
ax3

for X3 = +0

a~—= k-(xl,~)ax5
for ‘3 ‘ -0

k+ and k- are known functions which satisfy the conditions of regu-
larity (II) relative to a9/ax3which will be specified below.

*Figures for this appendix are found on pp. 332-333.
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In order to pose the problem correctly, one must furthermore state
exactly the hypothesis of regularity which one imposes on the solution;
we shall denote by (R) the portion of Oxl~ which corresponds to the

wake of the flattened body on (s).

(I) q is continuous, except for, eventually, across the
plane xl = O on (S) and (R).

(II) The first and second derivatives of q exist and are generally
continuous outside of (S); a possible exception may occur across certain
characteristic surfaces where the derivatives may have either disconti-
nuities of the first kind at a regular point or infinities at an excep-
tional point. Nevertheless, they may have infinities on (S) in order
to satisfy the hypothesis of linearization; av/ax3 can become infinite

only on parts of the boundary of (S) and only when one approaches it
by remaining outside of (S).

Furthermore, we shall assume &@x3 and b9/~xl to be continuous

if one traverses ox~x2 at a point outside of (S). This hypothesis

has an immediate physical significance for &4/~x3; the same holds true

for hqldxl if one recalls that this quantity is proportional to the

pressure. In other words, only &pfa~ can have a discontinuity of the

first kind across Oxl+ .

Finally, cp can be divided (as in chapter III) into its odd and
even parts with respect to X3. If q is odd in X3 (symmetrical

problem), &f/ax3 = O outside of (S). If q is even in X3 (lifting

problem), &p/axl = O in Oxl~ outside of (S) as it restits from

the hypothesis (II).

2. Fundamental formula.- We shall utilize the generalized formula
of Green

J!IvUL(v) - ] -j’’’=~vqdadavL(u) dT =
v

I 7 is the surface having an element do which bounds the volume V
—
having an element dT;

transverse direction.

‘(x1)%~x3) = O with

the derivatives

Thus one has, if

d/dv are the derivatives in the

x is defined by

outside of V

I



266 NACA TM 1354

I

Finally, utilizing the conception of the “finite part” of an integral
originated by Hadsmard,
and v which cause the
then writes

one may apply Green’s formula to functions u
employed integrals to become infinite. One

II)’[ 1
I

UL(v) - vL(u) dT = -

1[
u

v z

Let us consider at a point p(~1,~2,E3) (~~>o
Mach forecone r and let us intersect it by the

A is positive and very large, and by the plane

thus a volume

Admitting the

v.

V in the region ‘3 > 0, bounded

1

dv v~da—-
dv dv

for instance), the

plane xl = -A where

Xij=0. We determine

by a surface ~.

existence of q, we apply Green’s formula to the pair

H= 1

J(El - X1)2 - ~2 [~2 - ‘2)2+ (E3 - %)2]

H is the fundamental solution, in the sense of Hadamard, for the
wave equation.

We cannot discuss here all the details and all justificationsbut
we shall note the principal stages of the demonstration.

(a) It is shown that the generalized formula of Green canbe applied
effectively to the pair Q, H, even if the derivatives of v present
discontinuities of the first kind, owing to (II) which informs us that
these discontinuitiesoccux on characteristic surfaces.

(b) For the part of ~ situatedon xl = -A, the double integral

becomes zero due to the boundary conditions.

(c) On the cone r the double integral must be taken at its finite
part. Let us introduce the cone re with the equation
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and the plane Pb

xl =E1-~

Since e and b are small, one will

the surface adjoining ~, formed on

(5 > o)

calculate the double integral on

one hand by

by the circle CE5, with the section of I’E made

can easily show that the contribution due to r~

zero, and that the one due to C~b is -2ficp(P).

obtains, denoting by h the section of (r) by

re and on the other

by the plane P~. One

has a finite part of

Consequently, one

X3 = O, the relation

(d) In orderto eliminate q in the second term, one may apply the
image method utilized by V. Volterra in an analogous problem. Let P’
be the symmetric point of P with regard to Oxl~; let us apply Green’s

formula to the volume V situated in ‘3
> 0, bounded by the

planes xl = -A, X5 = O, and the Mach forecone of P’ by putting

u = 9(X1)X2)X3) v=~=H(p’)

One thus obtains

o=~
YJ

q~d~-~
JJ

@lda

h ax~ 2fi h ax3

and since for ‘3=0
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one has
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Combining this result with the preceding one, one obtains the desired
fundamental formula

3. The theorem of existence for the symmetrical problem.- In a
symmetricalproblem @ /~x5 is known on every face of x3 = O; conse-

quently CP may be calculated in the entire space. The existence of
the solution will be established if one verifies that this function q
satisfies L(cP)= O, the boundary conditions, and the conditions of
regularity.

(a) L(Q) = O, for the functions k(x1,x2) satisfying the

hypothesis of regularity; one may calculate the derivatives of q by
deriving under the sum si~ with respect to the coordinates of P.
Since only H depends on these coordinates and H satisfies L(H) = O,
the result follows from it as Hadamard has shown in a very general
mame r.

(b) In order to verify the boundary conditions, one must show that

This verification is easy if one puts

in the integral and then going to the indicated limit.

(c) Verification of the conditions of regularity leads to a careful
study of the behavior of CP and its derivatives. We can give here only
the conclusions of this study.
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A. In the plane Oxl~, let P+ and P-

with P so that

p+p = p-p = ~

(1) If there are only isolated points of

on the Mach lines ahead of P, and if &p/ax3

cp(P+)=q(P-) + O(E)

269

be two points lined up

discontinuity of N/ax3

is continuous at P

that is, Q is continuous at P, of the order E. An
is valid for the first derivatives &p/axl, &p/b~.

(2) If there is onlya finite number of points of
the Mach lines ahead of P and if P is a point of a
(compare chapter IV) of discontinuity for a@x~, Q

analogous result

discontinuity on
supersonic line
is continuous of

the order e, but %faxl and &p/b~ have dis~ontinuities of the

first kind. In particular, if the tangent to the line of discontinuity
at p forms with Oxl the angle u, the discontinuities of M/axl

/
and of @ bx3 are connected by the well-known relation

‘(*) = - J*’(%)

(3) If there is only a finite number of points of discontinuity on
the Mach llnes ahead of P, and if P is a point of a subsonic line of
discontinuity,the first derivatives of T become infinite as log ~
when one tends toward P.

(4) If there is adlscontinuity of &p/~xj on an entire segment

of one of the Mach lines ahead of P, the first derivatives-of ‘T become

there infinite as e-1/2.

B. Outside of the plane Oxl~ one has the following results:

(1) If the boundary of h is not at any point tangent to a line
of discontinuity of ~/~x3, and does not contain any finite part of

such a line, the first derivatives of qI are continuous and of the
order e.
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(2) If the boundary of h is at certain points tangent to a line
of discontinuity of apjaxj without containing any finite part of

such a line, P is situated on the characteristic surface which has
this line of discontinuity as directrix, and the first derivatives of
q admit discontinuities of the first kind at P when traversing this
surface.

(3) If in exceptional cases the boundary of h contains apart of
a line of discontinuity of &p/ax3j the first derivatives of q become

infinite as ●‘1/2; besides, such a point is necessarily isolated.

All these results taken together show that the conditions of regu-
larity are satisfied which proves the existence of the solution found
in this manner.

g. The the~rem of existence for the lifting problem.- We shall
insist less on the calculation of the solution, which one can find in
the published memoranda quoted before, particularly in reference 4, than
on the study of its singularities. However, in order to make this
investigation,we must indicate briefly the procedure of the calcula-
tion; we shall do so for the simplest case, the one where the edges of
the wing are independent. (Compare fig. 2.)

The fundamental formula permits the calculation of the potential
when one knows %ibx3 on the entire plane Oxl~.

It is clear that this quantity is zero upstream from the line Ml 9
with MMl being the characteristictangent to the leading edge of the

wing.

In order to calculate this quantity in the regions where it remains
provisionally unknown, it is advisable to make the change of variable

xl - p+=~

xl+px2=p
}

and

this

If w = pi(A) and w = P2(X) are the equations of the arcs AM

MNQ, one has at a point Jo> PO of the region MIMNNl (since in

region q is zero) the equation
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this equation entails the equality

which determines @’3(~oJPo) by the inversion of an equation of

Abel. One finds (ref. 4)

/

J+ (~o)
&!_=_ 1

‘X3 W=iqpl(,o)

aydx3 in the regionthus one knows

At a point

one has

where 9(AO)VO) is not zero (for instance on the wake),

-21q3Cp(Ao,vo)= 1(~0+0)

which gives, after a double Abel inversion

, ,- , ,, , ,, , ! I II . ..— ..——. —..--—
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This equation contains two unknown functions, and in general it will be
impossibleto determine them both without introducing a supplementary
hypothesis. But if one supposes that:

~ is continuous in Oxlx2 when traversing the subsonic trailing edge,
ax5
it will be seen that it is easy to calculate first q on the wake, and

/
then M ~x3 in Oxl~. The preceding equation is written

+

+
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If one makes V2 tend tuwrd p2(A2) with e ~eing a small quantity,

one sees that, according to the previous hypothesis, the second term of
the second member tends toward M/~x3(12 ,V2) whereas the third tends
toward zero. Let US moreover make the provisional hypothesis that the
last term tends toward zero (this hypothesis will have to be verified
later on), and we obtain

However, since q) maintains in the wake a constant value on the lines
parallel to Oxl, it suffices to know, for instance, the values of the

potential on the straight llne QI (fig. 2) in order to know them every-
where. In accordance with this remark

or

if one defines ‘P’ by

We note that the circulation along the subsonic trailing edge is thus
calculated.

It remains to be verified that the provisional hypothesis adopted
in the course of the calculation is well founded which can be accomplished
without difficulties. One sees thus how the solution of the lifting
problem can be determined.
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In order to establish that the calculated solution completely ful-
fills the problem that is the theorem of existence, one proceeds as in
the symmetrical case; thus the whole matter finally amounts to an inves-
tigation of the singularities of this solution; this investigationper-
mits a verification a posteriori of the conditions of regularity. In
order to make this investigation, it is necessary to study first of all
the behavior of dqax3 in the plane Oxl~. As before, we shall indi-

cate the results without demonstration.

(a) Study of &@xj in Oxl~. -First, one sees immediatelythat

‘1/2 when one tends toward the sub-aqdx3 increases indefinitelyas .s

sonic leading edge MN, remaining outside of (s). On the other hand,
according to hypothesis, this quantity is continuous on the subsonic
trailing edge NQ. We shall now specify its behavior along the charac-
teristic NNl; a rather simple calculation which we cannot reproduce

here, in order to avoid postponement of publication, permits to show that:

Along the line A = AN, V

of the first kind equal to
+J, a$@3 undergoes a discontinuity

1 1-—

/
The manner in which &p axj 1s calculated shows then readily that

ap/ax3 has no other discontinuities in the plane OXl~, outside of

(S), of course.

(b) Study of the solutlon in Oxl~.-

symmetrical problem remains valid by means

&ion: First of all, aqlaxland &p/b~

What has been said for the

of the following modifica-

become infinite like .s-1/2

along the subsonic leading edge. On the other hand, a very important
fact, the derivatives aqaxl and &P/&2 undergo discontinuitiesof

the first kind along the characteristics issuing from the boundary points

(s~l “ Por a9/axl,
between subsonic leading edge and subsonic trailing edge

however, such a discontinuity can occur only on .

(c) Study in space.- The only really new fact to be pointed out is
that across the Mach cones behind the boundary points between subsonic
leading and trailing edges, the first derivatives undergo a discontinuity
of the first kind.
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~. Final remarks.-

(a) We have adhered to demonstrating the existence of the solution,
but the employed procedure of demonstration shows at the sane time that
the solution is unique. Consequently, every solution which corresponds
to the hypothesis found by other methods (particularlyby the method of
conical and homogeneous flows) represents the unique solution to the
problem posed.

(b) One will also note that
along the subsonic trailing edge
also be expressed by saying that
this line. This is an immediate
behavior of the solution.

the supplementaryhypothesis introduced
in the case of a lifting problem may
the pressure remains continuous along
consequence of the investigationof the

(c) We ~~e not attempted to investigatehere the most general type
of surface . In general, the method can be applied by means of a
few precautions (compare ref. 4 or ref. 5). Nevertheless,there exist
cases where the application of this method actually fails, for instance,
the case where the wing does not possess a supersonic leading edge, or
also for certain dispositions of the trailing edge. Figure 3 shows such
examples; If one traces a few Mach lines, one will understand mnnediately
the reason for this failure.

(d) One of the advantages of the method just described is the fact
that it may be effectively applied to very general problems. Neverthe-
less, it does, in our opinion, not minimize the advantages of the method
of conical flows, since in many particular problems arising in aeronau-
tics, the method of conical flows (and the method of homogeneous flows)
lead in a simpler manner to the desired result.

(e) The method of the fundamental solution has the great merit of
permitting the study of the general conditions of the flow, particularly
the study of certain pressure discontinuitieswhich one encounters on
the surface of the wing in certain lifting problems.

No. 2 - On Homogeneous Flows

We developed the theory of homogeneous flows?g and gave a few
applications in a recent article (ref. 7). We shall give here a few
supplements to the general study made in section 1.3. If one puts

58Simultaneously,this problem has formed the subject of an article
by M. Poritzky (ref. 6). However, this author does not seem to us to
have gone as far as we have in the investigationof the homogeneous
flows.
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(n) a%p

‘(p,q,r) = &@x2qax3r
(p+q+r=n)

the (D[:\q,r) depend in a homogeneous flow of the order n only on

X and e. Inside of the Mach cone (17) these quantities maybe con-
sidered as the real parts of analytic functions of the variable Z
defined except for an additive purely imaginary constant which we shall
denote

~(n)

(p,q,r)(z)

A problem of homogeneous flows is treated for the nth derivatives.
These nth derivatives are connected by the relations of compatibility
which may be expressed in the following manner:

All the expressions

are identical
inequalitiess

whatever the integers p and q may be which satisfy the

In order to express the boundary conditions with the nth derivatives,
and to enter the nth derivatives into the calculation of the potential
or of the pressure

(
Cp = -u

)
, one will utilize a generalization of

Euler’s identity

[

(1) (1)

1

(1) n
q = i ‘19(1,0,0) + ~qo,l,o) + ‘39(0,0,1)

a formula in which one must use the following convention concerning the
~(k)
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One will find in the quoted article an application of these general
principles to the case of the flows flattened in one direction. The
methods used in chapter III can be generalized without any difficulties;
also, one may utilize in this investigationthe analogy of the electro-
lytic tank. A superpositionof homogeneous flows permits, in a very

simple manner, the investigation79of a rather large group of A wings:
“the A wings with affine sections.”

No. 3 - On the Methods Utilized in Chapter III

The exposition of certain problems of chapter III could be somewhat
simplified not only by omitting certain intermediary calculations of
wholly elementary character which we have mentioned to facilitate the

reading, but also by employing slightly different methods60. First of
all, as we have remarked in the text, certain simplificationsappear if
one places oneself in the plane z. Thus the symmetricalproblem may
be solved by the same formulas whatever the position of the obstacle
may be with respect to the Mach cone. Nevertheless one has to be very
careful regarding the determinations of the solution when one passes
from one case to another since the solutlon should be characterizedby
continuity. We have elected to utilize here the plane Z because the
relations of comparability in Z do not cause the appearance of multi-
form functions and the theoretical difficulties are, consequently, of
distinctly lesser importance even though the calculationsmay sometimes
be a little lengthier. Particularly, the demonstration of the theorems
of sections 3.1.1.3 and 3.1.1.4 is markedly simpler if one utilizes the
plane Z. Summarizing one may say that the plane Z is simpler theo-

retically while the plane z 61is simpler for t’< calculat~ons .

Mr. Ward has stated the solution of certain elementary problems
relative to obstacles flattened in one direction using a very elegant
method (ref. 8). His study is based on a solution of the equation of
cylindrical waves given by Whittaker. With our notations

590ne will also refer to the article of Mr. Fenain which will
appear shortly in “La Recherche A~ronautique”; in it one will find a
complete study of a certain number of these particulars.

60In conferences at the ‘Centre d’Etudes sup&ienres de m~cainque
(1949) we have made an exposition regarding conical flows flattened in
one direction which is very different in form from the one given in
this report.

61The ssme may hold true for the electric analogies (compare on
this subject the article of Mr. Fenain quoted before).
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Cp. J’(xl - (3% ch u+ i~xj sh u)f(u)du
c

is the potential of a conical flow provided that the contour C joins
two points U1 and ~ so that u~ and ~ are roots of the equation

In contrast, the function f(u) is arbitrary.

This very refined expression for q furnishes the relations of
compatibility and permits solution of the particular problems. The
homogeneous flows are given by the solutions of the wave equation of
the form

J (xl - f3@ chu+ ipxj shu)%(u)du
c

In the case of homogeneous problems of the order n, it seems neverthe-
less difficult to state the boundary problem clearly and to solve it by
this method without falling back on methods strictly equivalent to those
reemployed.

No. 4 - On the Complementary Hypothesis at the

Subsonic Trailing Edge

The question posed in section 3.3, which we left pending, seems to
admit a practically definitive answer; one must maintain the flows of
the type II which give rise to a discontinuity of the potential along
the wake of the wing. But as we have said before, this results from a
hypothesis clearly formulated in the appendix No. 1 which may be stated
as follows:

The gradient of the potential is continuous across a subsonic
trailing edge. All the remarks made in section 3.3 concerning the con-
sequences of this hypothesis remain valid.

The most decisive argument in favor of this hypothesis is that it
appears to be the simplest of all one may set up that insures the con-
tinuity of Cp.
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In the case of conical flows infinitely flattened in one direction,
we have seen that it entails a line of singularitiesfollowing ox~

along which w is infinite when the body has a trailing edge. Such an
occasion does not arise in the general case (compare appendix No. 1).
All methods of chapter III can be applied to the calculation of the
conical flows for which this complementaryhypothesis must be taken

into account. In particular, we have indicated elsewhere62 how one must
operate in this case for the analogical calculation of the solution.

The

Cx.-!
n

No. ~ - Remark on Sweptback Wings

With Subsonic Leading Edge63

formula (IV.37) may be written also

(cos27 1 + 2 sin2y - M2COS27

sln 7(1 - M2cos2~)3/2

‘~1 a(x)dx~l a(~)loglx - EId,

This formula lends itself wel~
shall search, in fact, for the
area, provides a minimum drag;

e(x)

one is led to seek the minimum

rl de(x)

to an investigationof the optimum. We
profile which, in delimiting a given
putting

J

x
—— u(t)dt

o

absolute value of the integral

1’

1
de(~)log IX - El

62Communication to the 7th Congr&s Internationalde M~canique
appliqu;e (1948).

63
This remark has been made by the author in the course of his

communication to the 7th Congr~s Internationalde M6canique appliqu~e
(1948), quoted above.

Ill
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It is easily seen, and the fact is
solution of the function

that is, that the desired

The train of thought

e(x) of

NACA TM 1354

well-known to aerodynamists,that the
this problem has the form

e(x) = km

profile is an ellipse.

which leads to (IV.37) cannot be applied to
the case where the profile has a tangent normal to the symmetry axis;
but according to a remark already made more than once, one may neverthe-
less assume that the obtained result does not lack connection with
reality.

This leads to the idea that, for a wing with subsonic leading edge,
it may be practical to utilize profiles with rounded leading edges.

One will note that this is not the case in supersonic regime. If
one takes up this problem for a wing of infinite span normal to the wind,
one finds readily that the optimum profile is formed by two symmetrical
parabolic arcs.

No. 6 - Remarks on Lifting

Sonic and Subsonic

(Compare Section

Sweptback Wings With

Leading Edges

4.1.2.3.2)

The formula (IY.69) may also be written by putting

[
~ox-E- 2(70 + F)] . tz 2(qo+yx) . ~

VOX + YXE

in the form

Cp = - ‘P*

l+tz x 1 + toz

{

x-d-

x- Yq-lo+Yx)(l+t9

}
qzl” ,+t2 {-
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One could make the calculation of the Cz of the plate studied in sec-
tion 4.1.2.3.2 in a different manner by obtaining first the preceding
integral, and integratingthe pressures along the plate. Thus one finds
that the Cp has in the region AA’A” of figure 88 the simple value

Along

- - ... - .

cp=-~ Jmx- 2y

AA” there exists therefore a pressure discontinuity equal to

Besides, this discontinuity may recalculated immediately from the
formula giving the Cp in making to tend toward zero since it is
clear that the integral tends toward a finite value when to tends

toward zero.

If the leading edge is subsonic, the same theory is applicable. In
this case, the Cp cannot be expressed with the aid of elementary func-

tions64. However, the pressure discontinuity along the Mach line issuing
from A may be calculated directly. One will compare this important
phenomenon with the general investigationmade at the end of the appen-
dix 1 which anticipates the existence of such discontinuities on the
Mach cones which have as vertices the ends of the subsonic leading edges.

No. 7 - Calculation of Fuselage Shaped Bodies

With Infinitesimal Opening Angle

At the end of section 4.2.4 we indicated that by composition of
conical flows one could give a complete study of any arbitrary spindle-
shaped bodies with infinites~l cone angle. In a communication to the
7th Congr&s International de Mecanique appliqu~e (September 1948),
Mr. Ward described an elegant method based on a solution of the wave
equation with the aid of symbolic calculation; this report has been pub-
lished (ref. 9). We shall show here the accuracy of our anticipation by

64Compare an investigation of this problem with num~rical applica-
tions in an article to appear shortly in “La Recherche Aeronautique.”

——.
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establishing through the method of composition of conical flows the
fundamental formulas given by Mr. Ward.

The notations which are not defined here are the same as those of
chapter II. In this chapter we have shown that in the neighborhood of
the obstacle, the complex velocity U(Z) had the form

with the

the cone.

as in the

“Anu(z) =~logz+~%
1

~ being numerical coefficients depending on the shape of

Let us put

neighborhood of the obstacle

and

(u(z) =AO log Z + log
)

~ + m %’xln
2X1 z zn

1

with the An’ being new coefficients. Hence one deduces

potential of perturbation has the form

with

that the

.n+l

with the ~“ denoting new numerical coefficients.
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More generally, the potential of the conical flow with infinitesimal
cone angle, the vertex of which is situated in xl = u, r = O, can be

expressed (in the neighborhood of the obstacle)

with

A superposition of conical flows the vertices of which are situated on
ox~ causes a flow which in the neighborhood of the obstacle depends on

the potential

where f(z) has the form

f(z) =aologz+bo+~~

1

the coefficients aoJ bo} an being defined by the integrals

a.= Jx’(xl - o%(~)

J
xl

an =
0(

xl - .)n+l~” (.)

(1)

(2)
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One will remark immediatelythat

b. = a. log
:- r~(”)~x’-” ‘“’t ‘t

J’
x-l nU

= alog~-
0

) Jo %(’)L log(xl - u ‘u

or

Pbo.aolog~-

Reciprocally, it is clear that
tion f(z) like (2) (in which

J’‘1 da.
~ 1%(XI

o

under very br~oad
the coefficients

-) G do (3)

conditions a func-
ao, bo, ~ are func-

tions of xl, ao, and b. connected by (3)) determines by (1) the

potential of a flow with infinitesimalcone angle in the neighborhood
of the axis ox~. This constitutes the fundamental result of Mr. Ward.

Thus we are in a position to construct such flows. The only theo-
retical question to be examined is the following: Can one determine the
coefficients ()an xl so that T represents the potential of a flow

around a given obstacle. We shall see that, visualizing the boundary
conditions, we may answer this question in the affirmative.

Let us designate

the equation defining

abscissa

obtained

The

xl and by

by

()r = F (3,x1

the obstacle by cx~ the section of the

~x, the function of the two variables r and !3

by considering xl in q as parameter.

normal derivative of ~xl along Cxl is given by



T
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+1
‘i’
j
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1J;,,’ NACA TM 1354 285

Now the boundary conditions along cx~ are written, taking into

account the usual approximations,

hence the relation

Thus one has, denoting by s and Vxl) respectively, the arc of Cxl

and the conjugate function of qxl

The coefficient a. ~s given by

S(xl) denotes the area delimited by C “ the coefficientsxlf an are

then obtained by solving an exterior Dirichlet problem for the con-
tour Cxl. Thus the flow around any obstacle with infinitesimalopening

angle can be completely determined.

Mr. Ward (ref. 9) has given in his memorandum splendid applications
of these results. In particular, he has shown, taking for expressing
the pressure the formula (1.11), that the total lift is uniquely expressed
as a function of the coefficient al of the terminal section of the

obstacle and that the drag depended only on the coefficients an of

this section.
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